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We provide additional details and analyses of the pro-
posed method in this supplementary material.

1. Implementation details

Our framework is implemented using the PyTorch Light-
ning library [5] and we use the public implementation and
pre-trained model checkpoints of DINO [2]. 1 All the ex-
periments with DINO ViTs in the main paper use DINO
ViT-small with a patch size of 8×8. Input images to the
model are resized to 400 × 400 without any data augmenta-
tion schemes, and are fed to a ViT-small of 8×8 patch size,
which returns 502 patch tokens. We resize the support im-
age token map dimension, originally Hs ×Ws, to 12×12 via
bilinear interpolation to reduce memory footprint. The ar-
chitecture details of CST are illustrated in Fig. 1 and enu-
merated in Table 1. Pascal-5i and COCO-20i are derived
from Pascal Visual Object Classes 2012 [4] and Microsoft
Common Object in Context 2014 [10], respectively. All ex-
periments use four NVIDIA Tesla V100 GPUs.

2. Further analyses

In this section we provide supplementary analyses and
results omitted in the main paper due to the page limit.

Computational complexity. Table 2 compares the num-
bers of parameters, MACs, GPU memory consumption of
different methods. The computational complexity of each
model is evaluated on forwarding a 1-way 1-shot episode of
images with 400 × 400 size.

Effect of self- vs. class-supervised ViT backbone. Table 3
shows the superior performance of the self-supervised ViT
backbone when compared with the class-supervised one, on
the task of FS-CS. The class-supervised ViT has the same
architecture as the self-supervised one, but was trained on
the 1000-class classification task using class supervision
on ImageNet 1K [16]. The gap is especially significant

*Work done during an internship at FAIR.
1https://github.com/facebookresearch/dino.
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Figure 1. Illustration of correlation transformer layer. Each query-
key-value, shortcut, aggregation, and feed-forward layer is imple-
mented with an MLP layer. We use group normalization [21] with
4 groups and ReLU [13] activation in implementation but omit
them in this illustration for simplicity.

name Cin → Cout component count # params

correlation
72→128

correlation
2 77.5 K

transformer transformer layers
clf. head 128→2 1x1 convolutions 2 29.1 K
seg. head 128→2 3x3 convolutions 2 259.5 K

total 366.0 K

Table 1. Model components of Classification-Segmentation
Transformer (CST). Input and output channel dimensions are de-
noted with Cin and Cout. The backbone network is omitted.

when training our CST model using only image-level la-
bels (33.2% vs. 6.9%). The class-supervised ViTs localize
foreground regions less accurately than the self-supervised
one (cf. Fig. 3), leading to less accurate pseudo-labels and,
ultimately, lower segmentation performance.
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model
frozen backbone training module GPU

name MACs # params MACs # params memory

HSNet [12] ResNet50 13.4 G 23.6 M 17.7 G 2.6 M 2.1 G
ASNet [9] ResNet50 13.4 G 23.6 M 7.3 G 1.3 M 2.3 G
CST (ours) ViT-S/8 53.4 G 21.7 M 3.7 G 0.4 M 2.4 G

Table 2. Comparing computational complexity of different models
for forwarding a 1-way 1-shot episode.

ViT backbone superv. clf. ER seg. mIoU

class-sup. image 79.6 6.9
self-sup. (CST) image 79.9 33.2
class-sup. pixel 85.8 54.0
self-sup. (CST) pixel 85.7 55.5

Table 3. Comparing class- and self-supervised ViT backbones for
FS-CS on Pascal-5i [17].

clf. seg. learn.
method backbone task heads ER mIoU params.

ASNet [9] ResNet50 coupled 84.9 52.3 1.4M
CST-(a) ResNet50 coupled 83.9 51.0 0.4M
CST-(b) ResNet50 decoupled 84.1 50.9 0.4M
CST-(c) DINO ViT coupled 84.3 54.2 0.4M
CST DINO ViT decoupled 85.7 55.5 0.4M

Table 4. Comparing self-supervised DINO ViT and class-
supervised ResNet50 for FS-CS with image-level supervision on
Pascal-5i.

image-level pixel-level
model clf. ER (%) seg. mIoU (%) clf. ER (%) seg. mIoU (%)
HSNet* [12] 76.4 31.7 82.2 49.5
ASNet* [9] 78.6 32.8 84.7 53.7
CST (ours) 79.9 33.2 85.7 55.5

Table 5. Comparing model performance on FS-CS using the
DINO ViT backbone on Pascal-5i. The methods denoted with *
are reproduced with the same DINO ViT backbone that CST uses.
In image-level supervised learning, all methods are trained with
the generated pseudo-GT mask labels.

Comparing DINO ViT-small vs. ResNet50. Table 4 com-
pares results using ResNet50 [8] or ViT-small as backbones.
Note that CST has independent classification and segmenta-
tion task heads that take input from class and image tokens
respectively. Therefore, it is not trivial to use ResNet50 as
a backbone for CST in order to compare to ResNet-based
methods [9, 12, 18]. Albeit not an apple-to-apple compar-
ison, we adapt ResNet50 for CST by artificially creating a
“class token” for representing global image semantics, by
global average-pooling ResNet feature maps. The ResNet-
based CSTs (CST-(a) and (b)) achieve similar performance
to ASNet [9] with fewer learnable parameters. Comparing
CST-(a) and (b), the gain from using decoupled task heads
is unclear, unlike with the ViT-based CST. We hypothesize

backbone pretrained with clf. ER seg. mIoU

ViT [3] MAE [7] 68.5 13.4
ViT [3] DINO [2] 82.2 33.7

Table 6. Comparing self-supervised DINO and MAE backbones
for FS-CS with image-level supervision on Pascal-5i.

that, because the class and segmentation representations are
generated from the same ResNet features, there is less ben-
efit of task-head specialization when compared to using the
class and image tokens in ViTs.

Similarly, Table 5 compares results using DINO ViT-
small as the backbones. Other methods [9, 12] are repro-
duced with the DINO ViT backbone such that they take the
same correlation tokens with CST. As those methods [9,12]
benefit from fusing the pyramidal ResNet features, they are
not perfectly compatible with DINO ViTs.

Comparison with other self-supervised backbones. Ta-
ble 6 compares the performance of our method when us-
ing different self-supervised backbones on FS-CS: DINO
ResNet50 and Masked Auto-encoder (MAE) ViT [7]. MAE
learns to reconstruct some masked input image tokens in an
auto-encoder [15, 19] framework, requiring no supervision.
We use an MAE-trained model with an architecture that is
identical to the DINO-trained ViTs, and that is also publicly
available 2. We observe that MAE ViTs show weaker local-
ization properties when compared to DINO ViTs as quali-
tatively compared in Fig. 3, resulting in low segmentation
performance.

Effect of multi-head token correlations. We examine
the effectiveness of head-wise correlation tokens in Eq. (2)
in Table 7. We split the class and image tokens into M
equal-sized tokens, each with dimensionality C/M, com-
pute cross-correlation, and then concatenate the M-head
correlations. We observe that the multi-head token corre-
lation is not only effective in performance but also boosting
faster convergence.

Loss-balancing hyperparameter λ. We choose the loss-
balancing hyperparameter λ based on the course-grained
hyperparameter search shown in Table 8. The experimental
results show that the performance does not differ signifi-
cantly, implying that it is robust to different values of λ.

Four-fold performance. We omit the four-fold perfor-
mance for a few experiments in the main paper due to space
limitations, and thus specify the four-fold performance of
Tables 2, 5, and 8, and Fig. 5 of the main paper in Tables 9,
12, 13, 14, respectively, for reference.

Experiments with K > 1 shots. Tables 10 and 11 present
FS-CS performance when 5-shot support examples are used

2https://github.com/facebookresearch/mae. As the available
models are pre-trained with 16×16 patches, we compare it with DINO
ViTs pretrained with the same patch size.

https://github.com/facebookresearch/mae


for each class during testing. Using five shots per class
brings 3.0% segmentation improvement compared to one-
shot models, when zero ground-truth pixel-level labels are
used. It is noteworthy that using more shots leads to greater
performance gains when learning with pseudo-GT masks,
when compared to learning without it; CST with pseudo-
GT masks (✓) improves from 33.2% → 36.2% with 1 →
5 shots, CST without pseudo-GT masks (✗) improves from
16.0%→ 16.9% (cf. Table 1 of the main paper).
Visualization of classification and segmentation token
maps. Figure 2 visualizes more samples of the channel-
averaged classification and segmentation token maps, Cclf
and Cseg, some of which were also visualized in Fig. 7 of
the main paper. The segmentation token maps delineate ob-
ject boundaries and the foreground, while suppressing back-
ground regions.
Visualization of pseudo-GT masks generated from dif-
ferent pre-trained feature extractors. Figure 3 visual-
izes the pseudo-GT masks generated from different mod-
els. Pseudo-GT masks from three ViTs with different train-
ing procedures are produced as formulated in equations 9
and 10 of the main paper. To generate pseudo-labels from a
self-supervised ResNet, the globally-average pooled feature
map from the support image is correlated against an image
feature map. In addition, we qualitatively observe that, with
the ResNet backbone, the inverse correlation better captures
foreground objects, and visualize this instead. The qualita-
tive results align with the quantitative results (Table 6 in the
main paper), in that the DINO ViT backbone produces the
highest-quality pseudo-GT masks.
Visualization of predicted segmentation masks. Figure 4
visualizes segmentation masks predicted by the image-level
supervised CST. The model correctly segments no fore-
ground when support image classes are irrelevant to those
of the query (1st row). Note that the model can also segment
small objects, and multiple objects. The last two rows show
failure cases; the model segments the apple container which
is not present in the ground-truth annotation (5th row) and
incorrectly segments a car given the support image con-
taining buses, which may result from vehicular class con-
fusion (6th row). Figure 5 visualizes segmentation masks
predicted by the pixel-level supervised CST. Leveraging
pixel-level ground-truth annotations, the pixel-level super-
vised model captures small objects at image corners (2nd
and 3rd row) and multiple objects from multiple classes (5th
row) precisely.

correlation superv. clf. ER seg. mIoU

single-head image 80.3 33.1
multi-head (CST) image 79.9 33.2
single-head pixel 85.5 54.3
multi-head (CST) pixel 85.7 55.5

Table 7. Comparing single- and multi-head token correlations of
Eq. (2) for FS-CS on Pascal-5i.

hyperparameter λ 0.05 0.1 0.5

clf. ER (%) 79.6 79.9 80.5
seg. mIoU (%) 33.1 33.2 32.9

Table 8. Hyperparameter search on the loss balancing hyperpa-
rameter λ in Eq. (7) in the main paper.

N-way 1-shot

classification 0/1 exact ratio (%) segmentation mIoU (%)

method 1 2 3 4 5 1 2 3 4 5

PANet [20] 69.0 50.9 39.3 29.1 22.2 36.2 37.2 37.1 36.6 35.3
PFENet [18] 74.6 41.0 24.9 14.5 7.9 43.0 35.3 30.8 27.6 24.9
HSNet [12] 82.7 67.3 52.5 45.2 36.8 49.7 43.5 39.8 38.1 36.2
ASNet [9] 84.9 68.3 55.8 46.8 37.3 52.3 47.8 45.4 44.5 42.4
CST 85.7 70.4 57.3 47.3 36.9 55.5 53.7 52.6 52.0 50.3

Table 9. Numerical performance of Fig. 5 in the main paper: per-
formance comparison on FS-CS with pixel-level supervision on
N-way 1-shot Pascal-5i.

support image query image classification
token map

segmentation
token map

Figure 2. Examples of channel-averaged classification and seg-
mentation task token maps, Cclf and Cseg.



1-way 5-shot 2-way 5-shot

classification 0/1 exact ratio (%) segmentation mIoU (%) classification 0/1 exact ratio (%) segmentation mIoU (%) learn.

method ps-mask 50 51 52 53 avg. 50 51 52 53 avg. 50 51 52 53 avg. 50 51 52 53 avg. params.

HSNet [12] ✗ 89.3 90.1 66.3 90.7 84.1 12.5 24.7 19.4 18.1 18.7 81.3 78.4 44.0 81.4 71.3 13.0 25.4 22.2 18.7 19.8 2.6M
ASNet [9] ✗ 84.3 89.1 66.2 90.0 82.4 11.5 22.0 14.0 17.4 16.2 72.5 80.6 41.8 76.8 67.9 8.7 23.1 11.8 18.0 15.4 1.3M
CST ✗ 88.8 85.1 63.8 88.7 81.6 13.1 21.6 15.3 17.6 16.9 88.8 74.2 41.6 78.9 70.9 13.1 22.3 15.6 17.5 17.1 0.4M
DINO [2] ⋄ - - - - - 20.1 23.6 16.4 16.8 19.2 - - - - - 12.9 11.9 8.4 9.4 10.7 0
CST ✓ 92.7 89.4 70.3 89.2 85.4 42.1 40.8 30.8 31.2 36.2 86.2 77.4 48.5 73.9 71.5 40.9 40.1 29.8 31.3 35.5 0.4M

Table 10. Comparing 5-shot performance, i.e., 5 support images per class, on FS-CS trained with image-level supervision on Pascal-5i.

1-way 5-shot 2-way 5-shot

classification 0/1 exact ratio (%) segmentation mIoU (%) classification 0/1 exact ratio (%) segmentation mIoU (%) learn.

method ps-mask 50 51 52 53 avg. 50 51 52 53 avg. 50 51 52 53 avg. 50 51 52 53 avg. params.

CST ✗ 79.3 83.4 83.2 86.3 83.1 11.9 11.2 8.4 11.1 10.6 64.9 73.6 72.3 72.6 70.9 10.7 11.2 8.3 10.7 10.2 0.4M
DINO [2] ⋄ - - - - - 13.9 12.3 10.4 11.9 12.1 - - - - - 7.9 7.0 6.6 7.0 7.1 0
CST ✓ 78.8 83.3 86.7 84.9 83.4 20.8 20.9 20.6 21.1 20.8 64.3 71.7 77.3 72.8 71.5 19.0 21.0 20.8 20.9 20.4 0.4M

Table 11. Comparing 5-shot performance, i.e., 5 support images per class, on FS-CS trained with image-level supervision on COCO-20i.

1-way 1-shot 2-way 1-shot

classification 0/1 exact ratio (%) segmentation mIoU (%) classification 0/1 exact ratio (%) segmentation mIoU (%) learn.

method ps-mask 50 51 52 53 avg. 50 51 52 53 avg. 50 51 52 53 avg. 50 51 52 53 avg. params.

CST ✗ 74.2 78.4 65.9 79.6 74.5 11.8 10.7 8.1 10.6 10.3 60.4 60.2 67.5 61.2 62.3 10.3 10.4 7.8 9.4 9.5 0.4M
DINO [2] ⋄ - - - - - 13.9 12.2 10.4 11.9 12.1 - - - - - 7.8 7.4 6.8 7.5 7.4 0
CST ✓ 74.0 78.4 82.1 78.1 78.2 20.2 19.8 19.1 19.5 19.6 59.8 60.5 68.2 61.2 62.4 19.0 17.5 18.1 18.5 18.3 0.4M

Table 12. Four-fold results on FS-CS with image-level supervision on COCO-20i. The results correspond to Table 2 in the main paper.

1-way 1-shot 2-way 1-shot

classification 0/1 exact ratio (%) segmentation mIoU (%) classification 0/1 exact ratio (%) segmentation mIoU (%)

method 200 201 202 203 avg. 200 201 202 203 avg. 200 201 202 203 avg. 200 201 202 203 avg.

PANet [20] 64.3 66.5 68.0 67.9 66.7 25.5 24.7 25.7 24.7 25.2 42.5 49.9 53.6 47.8 48.5 24.9 25.0 23.3 21.4 23.6
PFENet [18] 70.7 70.6 71.2 72.9 71.4 30.6 34.8 29.4 32.6 31.9 35.6 34.3 43.1 32.8 36.5 23.3 23.8 20.2 23.1 22.6
HSNet [12] 74.7 77.2 78.5 77.6 77.0 36.2 34.3 32.9 34.0 34.3 57.7 62.4 67.1 62.6 62.5 28.9 29.6 30.3 29.3 29.5
ASNet [9] 76.2 78.8 79.2 80.2 78.6 35.7 36.8 35.3 35.6 35.8 59.5 61.5 68.8 62.4 63.1 29.8 33.0 33.4 30.4 31.6
CST 77.6 82.0 83.1 80.5 80.8 36.3 38.3 37.8 40.7 38.3 61.0 66.0 68.2 60.5 64.0 34.7 37.1 36.8 36.3 36.2

Table 13. Four-fold results on FS-CS with pixel-level supervision on COCO-20i. The results correspond to Table 5 in the main paper.

1-way 1-shot 1-way 5-shot # learn.

method 200 201 202 203 mIoU FBIoU 200 201 202 203 mIoU FBIoU params.

RPMM [25] 29.5 36.8 28.9 27.0 30.6 - 33.8 42.0 33.0 33.3 35.5 - 38.6 M
RePRI [1] 31.2 38.1 33.3 33.0 34.0 - 38.5 46.2 40.0 43.6 42.1 - -
SSP [6] 35.5 39.6 37.9 36.7 37.4 - 40.6 47.0 45.1 43.9 44.1 - 8.7M
MMNet [22] 34.9 41.0 37.2 37.0 37.5 - 37.0 40.3 39.3 36.0 38.2 - 10.4 M
MLC [26] 46.8 35.3 26.2 27.1 33.9 - 54.1 41.2 34.1 33.1 40.6 - 8.7 M
NTRENet [11] 36.8 42.6 39.9 37.9 39.3 68.5 38.2 44.1 40.4 38.4 40.3 69.2 -
CMN [23] 37.9 44.8 38.7 35.6 39.3 61.7 42.0 50.5 41.0 38.9 43.1 63.3 -
HSNet [12] 36.3 43.1 38.7 38.7 39.2 68.2 43.3 51.3 48.2 45.0 46.9 70.7 2.6 M
DACM [24] 37.5 44.3 40.6 40.1 40.6 68.9 44.6 52.0 49.2 46.4 48.1 71.6 -
ASNet [9] 41.5 44.1 42.8 40.6 42.2 68.8 47.6 50.1 47.7 46.4 47.9 71.6 1.3 M
CST 39.6 45.8 45.0 45.5 44.0 70.3 42.8 51.6 50.2 50.2 48.7 73.7 0.4 M

Table 14. Four-fold performance on the conventional few-shot segmentation task (FS-S) with image-level supervision on COCO-20i [14].
The results correspond to Table 8 in the main paper.
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Figure 3. Pseudo-GT masks generated from class-supervised
ViT [3], self-supervised DINO ResNet [2,8], self-supervised MAE
ViT [3, 7], and self-supervised DINO ViT [2, 3] from the top.

support image
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Figure 4. 2-way 1-shot segmentation prediction of CST trained
with image-level labels. Image frames on the support images dis-
tinguish classes by colors.

support image
class 1

support image
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query image
prediction

query image
ground truth

Figure 5. 2-way 1-shot segmentation prediction of CST. The
model is trained with pixel-level labels during training, and pixel-
level support annotations are also given during testing (as over-
layed on the support images with colors). Human faces are
anonymized for visualization.
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