
A. Additional Experiments
A.1. Actionformer Downstream Head

Additional results using Actionformer [11], a recently
introduced state-of-the-art TAL head, is presented in Table 3.
Results using GTAD and BMN are also shown in parallel
with the Actionformer results in Table 3 as exactly the same
feature is utilized. Consistent performance improvement is
observed with the adoption of SoLa strategy regardless of
the downstream heads.

A.2. Additional Ablation Study

Inspired by Adapters [7, 8], the SoLa module has two
parallel passes: a skip connection and a 1D CNN pass with
a learnable scalar gating parameter initialized as 0. This
structure makes the SoLa module the identity mapping at its
first stage of training. As the training precedes, the gating pa-
rameter will deviate from 0 and the SoLa module will start to
slowly enhance the input feature sequence. Table 1 demon-
strates the ablation study of the design choice. We can see
that while the SoLa module with a direct pass works reason-
ably well, the Adaptor style SoLa module brings additional
performance gain thanks to its conservative enhancement of
the feature sequence.

Additional ablation studies on the remaining design
choices of the SoLa strategy are presented in Table 5 and 6.
It is worth noting that, results on varying K values suggest
that appropriate Λ assignment is an essential part in terms
of achieving temporally sensitive snippet feature sequences,
which justifies our λ function design. Moreover, result in
Table 6 alludes that asymmetric projector significantly stabi-
lizes the training procedure.

A.3. Error bars of the main results

To validate the robustness of our method, we report the
main results’ error bars with standard deviations in Figure 1.
12 and 5 independent downstream head training with varying
random seeds was done in Activitynet1.3 [1] and HACS [12]
experiments respectively. The result shows that our method
significantly outperforms the baselines with a strong statisti-
cal significance.

B. Connection to the Contrastive Learning
In this section, we provide a connection between the well-

known contrastive learning loss function and our Similarity
Matching loss.

Due to the unlabeled target dataset assumption, the train-
ing of the SoLa module must be done in a self-supervised
manner. Since recent studies [4, 5] have shown remarkable
success of contrastive learning in the self-supervised rep-
resentation learning domain, it is natural to start with the
standard NT_XENT loss [2]. For the positive sample rep-
resentation pair (zi, zj) and the similarity measure sim(·, ·),

Method
Temporal Action Localization (GTAD)

mAP@0.5 @0.75 @0.95 Avg gain

Baseline 49.78 34.46 7.96 33.84 -

SoLa (Direct) 50.74 35.35 8.29 34.66 +0.78

SoLa (Adapter) 51.17 35.70 8.31 34.99 +1.15

Table 1. Downstream head performance (G-TAD) with respect to
the design choices.

Loss
Temporal Action Localization (GTAD)

mAP@0.5 @0.75 @0.95 Avg gain

Baseline 49.78 34.46 7.96 33.84 -

Lsoften
in 45.99 30.60 7.17 30.34 -3.50

Lsoften
out 50.21 35.14 8.40 34.40 +0.56

LSM 51.17 35.70 8.31 34.99 +1.15

Table 2. Downstream head performance (G-TAD) with respect to
the loss terms. For Lsoften

out and Lsoften
in , they share the λ assignment

setting with the main experiments.

LNT_XENT
i,j is defined as follows:1

LNT_XENT(zi, zj) = − sim(zi, zj)︸ ︷︷ ︸
Lalignment

+ log
(
exp(sim(zi, zj)) +

∑
k∈I\{i,j}

exp(sim(zi, zk))
)

︸ ︷︷ ︸
Ldistribution

,

(1)

where I is the index set containing all the sample index.
However, unlike the common contrastive learning setting,
we cannot exploit data augmentation to generate positive
samples from the given data since we do not have any means
to manipulate the feature-level sample without hurting its
essence. This makes the standard positive/negative pair con-
cept inapplicable and thereby requires devising a different
approach for training the SoLa module.

In this regard, we start with the concept of the tempo-
ral structure that videos naturally convey: “adjacent frames
should be similar, while remote frames should remain dis-
tinct”. In fact, the instantiation of the above temporal struc-
ture can substitute the standard positive/negative pair con-
cept. But unlike the discrete positive/negative distinction in
Equation (1), the temporal structure offers a softened ver-
sion of the distinction in that “the similarity decreases as
the distance between the two features increases”. Therefore,
we introduce a softened indicator function λ(·, ·) → [0, 1],
whose output represents the input pair’s positiveness by a
continuous real value. For instance, a high λ(zi, zj) value

1LNT_XENT expansion is from [3, 9]
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Figure 1. Error bars of main experiments.

indicates (zi, zj) to be treated more like a semantically close
pair, whereas a low λ(zi, zj) value represents larger semantic
distance.

To incorporate λ(·, ·) into Equation (1), we pay careful
attention to the following two points: (i) Lalignment and
Ldistribution should be more influential with high λ(zi, zj)
and low λ(zi, zk) respectively to match our soft λ positive-
ness concept, and (ii) Equation (1) must be recovered from
Equation (2) and (3) by setting λ(·, ·) as a discrete indicator
function that only returns 1 if the given pair is a positive
pair and 0 otherwise. From these points, we placed the
coefficients λ(zi, zj) and 1− λ(zi, zk) in front of the posi-
tive/negative pairs in Equation (1). Two possible softened
NT_XENT losses can be derived from the coefficients’ posi-
tions:

Lsoften
in (zi, zj) = −λ(zi, zj) sim(zi, zj)︸ ︷︷ ︸

Lalignment

+ log
(
exp(λ(zi, zj)sim(zi, zj))︸

+
∑

k∈I\{i,j}

exp((1− λ(zi, zk))sim(zi, zk))
)

︷︷ ︸
Ldistribution

,

(2)

Lsoften
out (zi, zj) = −λ(zi, zj) sim(zi, zj)︸ ︷︷ ︸

Lalignment

+ log
(
λ(zi, zj) exp(sim(zi, zj))︸

+
∑

k∈I\{i,j}

(1− λ(zi, zk)) exp(sim(zi, zk))
)

︷︷ ︸
Ldistribution

.

(3)
We observed that Lsoften

out performs well, whereas Lsoften
in

degrades the downstream task performance significantly (Ta-

ble 2). Note that the gradient with respect to sim(zi, zk)
in Lsoften

in ’s Ldistribution term is scaled by 1 − λ. As
1 − λ ∈ [0, 1], we attribute the deterioration of the perfor-
mance to the broken gradient balance between Lalignment

and Ldistribution terms in Lsoften
in .

While we can directly work with the Equation (3), an-
other interesting observation in Equation (3) is that it re-
sults in a non-zero term even if only one pair (zi, zj) is
given for its computation, while a trivial cancellation of
Lalignment and Ldistribution occurs in Equation (1) and (2) .
As I\{i, j} = ∅ in the one pair case, the single pair Lsoften

out

can be represented as follows:

Lsoften
out (zi, zj)

= − λ(zi, zj)sim(zi, zj) + log
(
λ(zi, zj) exp(sim(zi, zj))

)
= −λ(zi, zj)sim(zi, zj) + log λ(zi, zj) + sim(zi, zj)

=
(
1− λ(zi, zj)

)
sim(zi, zj) + const

= −(1− λ(zi, zj)) log(1− p) + const,
(4)

where p = 1 − exp(−sim(zi, zj)). Note that p monoton-
ically increases as sim(zi, zj) increases for all sim(zi, zj),
allowing the interpretation of p as sim(zi, zj) without the
loss of generality. However, the single pair Lsoften

out goes to 0
when the λ goes to 1, regardless of the p value. To resolve
this issue, we added symmetric term −λ(zi, zj) log p to the
single pair Lsoften

out . Here, if we assume the strictly positive
similarity measure (e.g., sim(z1, z2) =

1
∥z1−z2∥2 , z1 ̸= z2),

p is bounded to (0, 1). Denoting the bounded p as p̂, similar-
ity matching loss LSM is formulated as

LSM(zi, zj) = −λ(zi, zj) log p̂−(1−λ(zi, zj)) log(1− p̂),
(5)

where p̂ ∈ (0, 1) is the network’s prediction of the given
pair’s similarity. Intuitively, our loss term simply minimizes
the Binary Cross Entropy (BCE) between the network pre-
diction p̂ and the given label λ(zi, zj), as its name “similarity
matching” suggests. We empirically found out that our sim-



Method
Temporal Action Localization (GTAD) Temporal Action Localization (ActionFormer) Temporal Action Proposal (BMN)

mAP@0.5 @0.75 @0.95 Avg gain mAP@0.5 @0.75 @0.95 Avg gain AR@1 @10 @100 AUG gain

Baseline 49.78 34.46 7.96 33.84 - 50.22 33.81 7.75 33.19 - 33.59 56.79 75.05 67.16 -

SoLa(ours) 51.17 35.70 8.31 34.99 +1.15 51.64 34.81 8.02 34.21 +1.02 34.25 57.75 75.86 68.07 +0.91

Table 3. TAL performance in Activitynet1.3 [1] dataset with various downstream heads.

Hyperparameter Value
Epoch 500

Learning rate 0.0001

Hidden Units 1024

Conv layers 3

Kernel sizes {5, 1, 1}

Optimier AdamW [6]

Batch size 256

K 16

s 8

TSM size 8×8

(a) hyperparameters for the SoLa
training.

Hyperparameter Value
Learning rate 0.01

Momentum 0.9

Epoch 100

Batch size 256

Optimizer SGD

(b) Hyperparameters for
the linear evaluation

Table 4. SoLa module hyperparameters. K is a constant for the λ
assignment (Equation 1 in the main paper) and s is the step size
described in the caption of the main paper’s Figure 2.

ilarity matching loss even works better when it comes to
optimizing the soft landing module.

C. Justification of the similarity assumption
Assignment of soft pseudo-label (Eq.1) is from the local

similarity assumption:

“Only adjacent features should be similar while
distant features remain distinct.”,

which is based on the empirical observation on general
videos. One might suspect that the above assumption over-
simplifies the complex characteristics of untrimmed videos.
However, the fact that only “sampled subsequence of the
given video” is utilized in the SoLa training procedure should
not be neglected. It indicates that for the SoLa training, the
assumption does not have to hold in the whole video, but
only in the sampled video clip which is relatively shorter
than the whole video. Thus, the exact local similarity as-
sumption utilized in the SoLa training procedure should be
noted as

“Only adjacent features should be similar while
distant features remain distinct, if both features
are from the same sampled subsequence.”,

which is a far more relaxed one compared to that of its whole-
video version. It’s worth noting that adjusting the length
of the sampled subsequence can accommodate videos with

Setting Temporal Action Localization (GTAD [10])
K Step mAP@0.5 @0.75 @0.95 Avg

Baseline 49.78 34.46 7.96 33.84

4 8 50.16 34.92 8.17 34.35

8 8 50.59 35.29 7.94 34.53

32 8 50.80 35.33 8.56 34.80

16 2 50.63 35.39 8.23 34.69

16 4 50.96 35.61 7.65 34.83

16 12 50.88 35.37 7.58 34.64

16 8 51.17 35.70 8.31 34.99

Table 5. Additional ablation study results on ActivityNet-v1.3.

Architecture Temporal Action Localization (GTAD)
mAP@0.5 @0.75 @0.95 Avg

Symmetric 49.75 34.58 6.90 33.73
Asymmetric 51.17 35.70 8.31 34.99

Table 6. Ablation study results about asymmetric projector on
ActivityNet1.3.

repetitions because if the subsequence length is much shorter
than the repetition duration, the local similarity assumption
still holds.

Moreover, there is no need for all the samples to strictly
satisfy the local similarity assumption. Although there might
be some counterexamples, we have found that training with
the above assumption is reasonable as long as the number
of them does not exceed the samples that obey the local
similarity assumption. To support our claim, empirical anal-
ysis on this issue is presented in our main paper (Figure 3)
which shows that general and widely used untrimmed video
datasets mostly follow the local similarity assumption.

D. Implementation Details
We adopted a simple feedforward neural network for

the SoLa module architecture. It consists of three lay-
ers: 1DConv-ReLU-1DConv-ReLU-1DConv, with addi-
tional residual connection from the very first layer (before
the first 1DConv) and the last layer (after the last 1DConv).
Here, the 1DConv pass is scaled with α, a learnable parame-
ter which is initialized as 0. Other detailed hyperparameters
are presented in Table 4.

We do not think our SoLa module’s architecture is glob-
ally optimal. Rather, we show that despite its overly simpli-
fied architecture, the SoLa strategy still works well. Future



research will include devising better SoLa module architec-
ture.
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