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A. The Concept of Superclass

Superclass describes a situation where various categories
share a common label. To be more specific, images under a
superclass are not composed of the same thing with differ-
ent perspectives, different poses or different breeds, just as
the basic level class does, but is composed of similar or even
completely distinct things according to the actual classifica-
tion needs. The number of subclasses under one superclass
may be extremely large. Therefore, one main characteristic
of superclasses is their subclasses are huge and various.

In fact, superclass problems often occur in real-world or
even in laboratories. The most classic scenario is refuse
sorting, in which thousands of kinds of waste share only a
handful of labels and it is resource-consuming or even im-
possible to label every kind of waste in training. And when
sorting refuse, it is not wise and necessary to accurately
identify what exact object they are. Fig. 1 gives a brief
overview of refuse sorting problems and it shows the key
differences between superclasses and basic-level classes.
Another common scenario is to distinguish between pedes-
trians, animals, obstacles and vehicles. There are 4 super-
classes and it is not necessary to identify objects accurately,
such as cars, trucks and motorcycles.

B. Dataset Details

To simulate the superclass problems with known
datasets, we select three benchmark datasets and two
real-world datasets, and reorganize them into superclass
datasets. To avoid contingency, we adopt a variety of differ-
ent classification perspectives and numbers of categories.
Tab. 1 shows our classification criteria in detail. The col-
umn Superclass Labels lists all the new labels of each re-
organized dataset, and we control the balance of the num-
ber of samples per superclass when constructing. Taking
CIFARI100-4 as an example, the whole structure and the
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Figure 1. Illustration of superclass. Superclass describes a situ-
ation where various categories share only one common label. The
number of subclasses under one superclass can be extremely large
and it will be unrealistic to label every one of them.

specific correspondence between the superclass labels and
the original labels are shown in Tab. 2.

C. Relationship between Superclass and
Coarse-grained Classification

In past research, when it comes to discussing category
hierarchy, most studies tend to focus on fine-grained clas-
sification [1, 4, 5], while coarse-grained classification re-
ceived little attention. On the whole, coarse-grained clas-
sification aims to use only coarse-grained labels to directly
complete the classification, which is a kind of weakly su-
pervised learning. Though several existing works explored
some coarse-grained situations [8, 10-12], we noticed that
the so-called coarse- and fine-grained are just a pair of rel-
ative concepts [9, 13], and it depends on the research topic.
To precisely define the superclass problem proposed in our
work and distinguish it from previous research, Fig. 2 il-
lustrates the hierarchy of classification. In our work, the
superclass problem is at a higher level than previous top-
ics, and the difficulty is about the various and distinct visual
features in one superclass, while existing works do not.

Here we present the performance of an existing study on
coarse-grained problem [12] on our constructed superclass



Datasets Superclass Labels

CIFAR100-3 aq}latic land-motional
stationary
CIFAR100-4 artifacts mammals
natures non mammals
aquatics household items
CIFAR100.7 DO0 small animals  outdoor scenes
plants small animals
vehicles
mini-ImageNet animals non animals
voC abiotic biotic
Africa Americas
FMoW Asia Europe
Oceania Others
Age 0-2 Age 4-6
. Age 8-13 Age 15-20
Adience Age 25-32 Age 38-43
Age 48-53 Age 60+

Table 1. Dataset details. We reorganized CIFAR-100 in 3 dif-
ferent perspectives and adopt mini-ImageNet, VOC, FMoW and
Adience as a supplement, forming 7 datasets to simulate the real
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Figure 2. An example of category hierarchy. Since coarse and
fine are relative concepts, previous studies tend to define them dif-
ferently. The superclass we proposed in this paper is actually at a
higher level in the hierarchy tree.

dataset, the result is shown in Tab. 3. Due to the difference
between superclass problems and traditional coarse-grained
problems, they fail to learn valid superclass-aware represen-
tations and then end up with bad performance.

D. Understanding SCLRE

The Relationship between CIA and Existing Atten-
tion Method. CIA explores the attention across different
instances and thus learns a high-level superclass concept.
Specifically, Eq.(1) in the manuscript shows that the atten-
tion is acted on the feature representation embedded from
all the batch instances Z. Thus, a high-level representation

crossed instances are enhanced by leveraging the attention
relationships. While existing attention methods mainly ex-
plore the attention on representations from each single in-
stance, then they learn an instance-level normal class con-
cept.

An Analysis about Superclasses. To better understand
SCLRE, We further calculated each superclass’s accuracy
and proportion-weighted total accuracy. The results are
listed in Tab. 4. Since the datasets are constructed in a bal-
anced way, we observed overall effectiveness across super-
classes. However, there is still a gap in accuracy among
different superclasses. For example, results of superclasses
Aquatics and Outdoor Scenes are less attractive, while su-
perclasses like Stationary, Non-Mammals and Non-small
Animals claim higher accuracy.

To draw a conclusion, SCLRE performs better on super-
classes that contain richer contents. Raw classes of Aquatics
and Outdoor Scenes are more similar than that of Stationary
and Non-Mammals (e.g. outdoor scenes are visually similar
while items of various shapes can all be stationary). This
phenomenon indicates that CIA explores and constructs the
superclass concept more accessible when the superclass it-
self is informative enough. If the contents are quite similar,
homogeneity across the contents will result in less effective
representation enhancement. On the contrary, if the content
is rich enough, the enhancement across instances can better
explore the concept of superclass.

E. The Isotropy of Self-Supervised Contrastive
Pretraining

When it comes to superclass problems, an obvious
anomaly is why self-supervised contrastive models are still
workable even without superclass labels. This is because
the learning process of conventional self-supervised con-
trastive models is isotropic. In physics and mathematics,
isotropy means exhibiting the property of being indepen-
dent of direction. Here we use isotropy to express that
self-supervised contrastive pretraining has no directivity be-
cause of the absence of supervised information.

Without any essential information about superclasses
and/or basic-level classes, the self-supervised contrastive
loss function just pulls instances and augmentations to-
gether and pushes other instances away in the embedding
space. Accordingly, the self-supervised model is effec-
tive in the basic-level categories, as they can form natural
clusters by themselves, but it is not the case for the su-
perclass. Once the task becomes coarser than usual, self-
supervised contrastive pretraining will show obvious unifor-
mity and isotropy. Fig. 3 demonstrates this kind of isotropy
of self-supervised contrastive pretraining in visualization.
As shown in Fig. 3, self-supervised contrastive model treats
both flowers and bottles as negative, pushing both of them
away from the positive pair. Without directivity, the model



classes CIFAR100-4  CIFAR-100 classes CIFAR100-4 CIFAR-100

classes CIFAR100-4 CIFAR-100 classes CIFAR100-4 CIFAR-100

baby 0 2 squirrel 0 80
bear 0 3 tiger 0 88
beaver 0 4 whale 0 95
boy 0 11 wolf 0 97
camel 0 15 woman 0 98
cattle 0 19 aquarium_fish 1 1
chimpanzee 0 21 bee 1 6
dolphin 0 30 beetle 1 7
elephant 0 31 butterfly 1 14
fox 0 34 caterpillar 1 18
girl 0 35 cockroach 1 24
hamster 0 36 crab 1 26
kangaroo 0 38 crocodile 1 27
leopard 0 42 dinosaur 1 29
lion 0 43 flatfish 1 32
man 0 46 lizard 1 44
mouse 0 50 lobster 1 45
otter 0 55 ray 1 67
porcupine 0 63 shark 1 73
possum 0 64 snail 1 71
rabbit 0 65 snake 1 78
raccoon 0 66 spider 1 79
seal 0 72 trout 1 91
shrew 0 74 turtle 1 93
skunk 0 75 worm 1 99

apple 2 0 bus 3 13
cloud 2 23 can 3 16
forest 2 33 castle 3 17
maple_tree 2 47 chair 3 20
mountain 2 49 clock 3 22
mushroom 2 51 couch 3 25
oak_tree 2 52 cup 3 28
orange 2 53 house 3 37
orchid 2 54 keyboard 3 39
palm_tree 2 56 lamp 3 40
pear 2 57 lawn_mower 3 41
pine_tree 2 59 motorcycle 3 48
plain 2 60 pickup_truck 3 58
poppy 2 62 plate 3 61
rose 2 70 road 3 68
sea 2 71 rocket 3 69
sunflower 2 82 skyscraper 3 76
sweet_pepper 2 83 streetcar 3 81
tulip 2 92 table 3 84
willow_tree 2 96 tank 3 85
bed 3 5 telephone 3 86
bicycle 3 8 television 3 87
bottle 3 9 tractor 3 89
bowl 3 10 train 3 90
bridge 3 12 wardrobe 3 94

Table 2. Details of CIFAR100-4. To introduce more detailed information of those datasets and their structures inside, we use CIFAR100-4
as an example to list all the superclasses corresponding to each subclass.

CIFAR100-3 CIFAR100-4 CIFAR100-7

Baseline 72.8 76.0 68.9
GEORGE [12] 68.8 65.8 43.7
SCLRE 80.1 84.0 78.1

Table 3. Results of GEORGE on superclass problem. When
traditional coarse-grained classification models are applied to su-
perclass problems, they may get even worse results than the base-
line.

CIFAR100-3 CIFAR100-7
Superclass Prop. Acc.(%) Superclass Prop. Acc.(%)
Aquatics 18% 61.7 Aquatics 10% 66.9
Land-Motional ~ 42% 82.5 Household
Stationary 40% 87.9 Items 15% 83.9
Total - 80.1 Non-small
CIFAR100-4 Animals LS32 )
Superclass Prop. Acc.(%) Outdoor
Artifacts 30% 82.7 Scenes 32 e
Mammals 20% 71.1 Plants 22% 78.3
Natures 20% 84.8 Small Animals  10% 83.1
Non-Mammals  30% 924 Vehicles 10% 83.4
Total - 83.7 Total - 78.1

Table 4. Accuracy of each superclass in CIFAR-100 datasets.
We calculate the proportion(Prop.) and accuracy(Acc.) of each
category. Categories with better results are marked in gray, while
categories that perform less well are marked in light gray.

effect on different flowers is almost the same as that on bot-
tles, which presents the redundancy of self-supervised con-
trastive pretraining. What’s more, the redundant boundaries
generated during this process will result in fake and irra-
tional superclasses being also effective in classification.
We conduct a brief test to further verify this phe-
nomenon. We select orchids, roses and tulips as 3 sub-
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Figure 3. The isotropy of self-supervised contrastive pretrain-
ing. Due to the absence of supervised information, apart from
different superclasses, self-supervised contrastive pretraining will
push basic-level classes within the same superclass away, forming
redundant boundaries, which interfere with the task.

classes of superclass A and select bottles as another irrel-
evant superclass B. ResNet-50 is chosen as the baseline to
conduct normal training on superclass A and B, which is a
real task. Then we take out the tulips from superclass A,
change their labels to superclass B, and conduct fake tasks
of self-supervised pretraining to find anomalies. Generally,
self-supervised models can greatly improve the accuracy in
real tasks. So what we are interested in is how would self-
supervised models perform if subclasses and clusters are la-
beled on the contrary. To eliminate the interference of nor-
mal subclasses, we only focus on the classification results
of tulips.

Tab. 5 presents the results of this brief experiment. It
is expected that the accuracy of the baseline will decrease
significantly in the fake task. It is observed that 57% of
tulips are identified as bottles by baseline. However, it
is unexpected that self-supervised models still follow the



type Percentage as flowers  Percentage as Bottles

Baseline real task 94.0 6.0
Baseline fake task 43.0 57.0
SimCLR [2] fake task 25.0 75.0
MoCo v2 [3] fake task 37.0 63.0

Table 5. Classification result of tulips. While self-supervised
models generally improve accuracy in real tasks, We exchange
the labels of tulips in downstream tasks and observe the accuracy
changes. The result shows that even though tulips are labeled as
irrelevant superclasses, self-supervised models still improve the
task accuracy significantly according to their labels, but this im-
provement is fake and useless, which reveals the isotropy of self-
supervised pretraining in superclass problems.

fake labels and continue to take effect. They significantly
improve the percentage of classifying tulips into bottles,
without any abnormality during the training process. In
other words, self-supervised contrastive models are a mixed
blessing. Whether tulips are regarded as flowers or bottles,
self-supervised pretraining can improve accuracy. This is
precisely because of the effect of isotropy in self-supervised
contrastive training, which shows its limitations. Self-
supervised models will not get any information about which
superclass tulips are during the training process. What they
do is simply complete the process of data augment and fea-
ture remapping at instance-level, and then hand it over to
the downstream task. Therefore, once the task becomes
coarser, no matter what label is given to the subclass, the
self-supervised pretraining can improve the accuracy of the
given label, which is unreasonable.

F. Target Generation

We explain the process of target generation in this sub-
section. The representations in superclass problems may
have a very scattered distribution on the hypersphere em-
bedding space. Pulling the representations close or away
directly based on their superclass labels may fail due to the
unclear class center. Because the class center can’t be pre-
dicted, we first randomly generate several preset anchors
for each category like [7], ensuring they’re as far as pos-
sible from each other and then regarding them as the cen-
ter of each category. In this way, each category has a pre-
defined representation center, and we will be able to guide
the scattered samples at the start of training to the same
place. Given the category amount and the dimension of
representations, we generate the anchors by minimizing the
following loss function

1S &
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where K demonstrates the category number and ¢; demon-
strates the representation of the ¢-th target anchor.

G. More Details of the Robustness of SCLRE

We design more experiments to verify the robustness of
SCLRE by changing the backbone and calculate the accu-
racy on other datasets. We further apply this experiment to
the CIFAR100-4 and CIFAR100-7 datasets.

As Tab. 6 illustrates, SCLRE can also make stable
improvements on CIFAR100-4 and CIFAR100-7 datasets.
On both smaller and larger convolutional neural networks,
SCLRE improves performance in different degrees.

H. Proof of Generalization Ability

Proof of Lemma 1. Though we don’t have a data aug-
mentation process, the positive and negative pairs we create
are still in a (o, §)-augmentation mode. As a conclusion
in [6], if some basic conditions are matched, the generaliza-
tion error of downstream classifier G ; has an upper bound:

Err(Gy) < (1—-0) +R.. (1)

When the encoder f is L-Lipschitz continuous, we have:

RZ < n(€)* - EyEy, upep(o|lvr — v2|°. (2)

With the assumption that ||v|| = 1, i.e. all the trans-
formed feature vectors are L2-normalized, we have:

1
Eval Vs EP(U)vipUZ =_E

5 ’U,'L)/Evl’UQEP(,v) H’Ul - ’l)2||2 —1.

v—eP()
(3)
Therefore,

Err(Gy) < (1—0)+ n(e)\/Q —2E,E,, v ep(v)V] V-

This finishes the proof.

The above lemma connects generalization error with L
and indicates that reducing the distances between features
of positive samples helps to reduce the generalization error.
But in superclass image recognition, the samples sharing
the same coarse label don’t necessarily share the same se-
mantic information.

In this scenario, a traditional contrastive framework
doesn’t guarantee good alignment. Alternatively, our cross-
instance attention module is shown to be successful in the
experiment. In the following, we prove that the effect of the
cross-instance attention module also limits the generaliza-
tion error by constraining its upper bound.

Proof of Lemma 2. Noticing that in lemma 1, vy, v are
samples pairs with same coarse label, we can further dived
the condition into 2 parts:

1. v1 and v, shares the same fine label and the same
coarse label.

2. v; and vy have different fine label but the same coarse
label.



CIFAR100-4 CIFAR100-7
ResNet-18 ResNet-34  ResNet-50 ResNet-101 ResNet-152 | ResNet-18 ResNet-34 ResNet-50 ResNet-101  ResNet-152
Baseline 78.3 80.9 76.0 78.6 78.2 73.3 74.9 70.1 73.5 71.9
SCLRE 82.0 82.9 84.0 83.1 33.3 76.1 77.0 78.1 77.0 77.0
Improve.(%) +3.7 +2.0 +8.0 +4.5 +5.1 +2.8 +2.1 +8.0 +3.5 +5.1

Table 6. Robustness on CIFAR100-4 and CIFAR100-7. We verify the robustness of SCLRE on more datasets.

Assuming that there exists a ratio p that there are p pairs
belong to occasion Item 1, and (1-p) pairs belong to occa-
sion Item 2. Then the latter part of Eq. (4) can be diveded
into:

T, _ T
EUE’Ul,l)QEP(U)vl Vg = p- Ev]Evl,vgeF(v)vl V2

(o1

T
+ (1= p) - EyE oy vpep) vy V2,
c(v1)#c(va)

“)

o

where F'(-) stands for all the samples share the same fine
label.

In O;, all the vectors share the same fine label, which
means they have similar embeddings and semantic informa-
tion. We can believe that majority of the samples in O, are
close enough, which means for (1 — ¢;) part of the sample,
s(v1,v2) = ¢1. Then we have:

®)

In O,, since the samples don’t share any semantic in-
formation, we assume that (1 — e5) part of the samples
have different feature vector z. And for e part, consid-
ering that features z are not L2-normalized, we assume that
igf(alyiazj +ay; a27i)zisz = 9, where a1 ; demonstrates
i>j

EU]EM,WQGF(U)U{'UZ = (1 - 61)(p1.

the i-th value of vector a;. Also, we can assume that the
least L2-norm of z is K, which means Vz € Z, ||z|]? > K.

To analyze the O2, we can bring the definition of cross-
batch attention module into eq.(4), then the v; and vs in the
Oy part will be:

M1 . MQ . 'U?UQ =
n
2 T
> avianillzl? + ) (a14a2,; + a1 jasi)z]
i=1 i>7

n
n
> avsanillal + () oo
i=1

e -n(n—1)

n
> ; a1,:a2,q|| 2> + 9 ') (6)
n
e -n(n—1
Sk S ansan + % .

i=1
€2 -n(n—1)

=nK -|lar]| - [|az]| - s(ar, az) + 5

T P2
ez -n(n—1)

>K - s(ay,a2) + 5

* P2,

where M7, My are L2-norm of vy, vo before they are nor-
malized, respectively. Since the attention vector a is an out-

put after softmax-regulization, its leagth is at least \/% .

Based on Egs. (4) to (6), we can get the lower bound of
]Ev]Evl , U2 EP(U),U%-"UQ:

EUE'ULUQEP(U)U{UQ =
(1-plea-n(n—1)

p(1 — €)1 + oM, M, P2
+ %Eal,zmeozs(ah az)
=C,+ %s(al, as)

This finishes the proof.

The above lemma connects the alignment of posi-
tive samples with the similarity of their attention vector
s(a1,a2) . We summarize the above ideas into the follow-
ing theorem.
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