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Overview. The supplementary materials are organized as:

• Section A shows a detailed model architecture.

• Section B presents further quantitative analysis.

• Section C presents further qualitative analysis.

• Section D presents implementation details.

• Section E shows discussion, including limitations, fu-
ture work, and ethical considerations.

A. Details of model architecture
A detailed architecture of our proposed model is pre-

sented in Figure 1. We use the encoder-decoder model,
where the encoder aggregates the multimodal context, and
the decoder generates the target sentence using the hidden
states of the encoder. The answerer models (i.e., the student
and the teacher) utilize the given image, the dialog history,
and the question as the context. On the other hand, the ques-
tioner uses the given image and the dialog history as context
to generate the question.

We employ the ViLBERT model [23] as our encoder.
We employ the BERTBASE model [7] for sequence genera-
tion [31] as our autoregressive decoder. The decoder has 12
layers of transformer blocks, with each block having 12 at-
tention heads and a hidden size of 768. We present a detailed
view of the encoder in (b) for Figure 1. The encoder consists
of the vision stream and the language stream. The language
stream is the same model as the decoder (i.e., BERTBASE),
which has 12 layers of transformer blocks. The vision stream
has 6 layers of transformer blocks, with each block having 8
attention heads with a hidden size of 1024. The co-attention
layers connect the 6 transformer layers in the vision stream
to the last 6 transformer layers in the language stream. The
encoder concatenates the hidden states of each stream and
passes them to the decoder. The decoder generates the target
sentence by using them.

*Equal contribution

B. Further quantitative analysis

B.1. Experiments on the discriminative models

In this subsection, we discuss the details regarding GST
for the discriminative visual dialog. We first describe how
we can adapt GST to the discriminative models and then
show the results on VisDial v1.0 test-standard split.

Model architecture. Although our main focus is the genera-
tive model, we conduct additional experiments to identify
the effect of GST in the discriminative VisDial model. Our
proposed models (i.e., the student, the teacher, and the
questioner) are based on encoder-decoder architecture where
the encoder is based on the vision-and-language encoder
model [23], and the decoder is the transformer decoder [31].
In this experiment, we remove the decoder model, so
the student is based on the encoder-only architecture, the
same model architecture as the ViLBERT model [23]. We
describe more details in the following subsection.

Tricks for adapting to a discriminative task. The goal
of the discriminative task is to retrieve the ground-truth an-
swer from a list of answer candidates. Therefore, it implies
that the gold VisDial dataset [6] contains the pre-defined
answer candidates for each question to train and evaluate the
discriminative models. However, the silver VisDial dataset
generated by our proposed models does not include the an-
swer candidates since the dataset is generated to train the
generative models that do not need the answer candidates.
To circumvent this issue, GST first trains the student model
for the generative task, i.e., the encoder-decoder model, on
the silver VisDial data. Then, we extract the trained weights
of the encoder in the student and initialize the encoder-only
model with the weights. Finally, the encoder-only model
is trained to retrieve the ground-truth answer from the list
of answer candidates using the gold VisDial dataset. This
trick circumvents the need for the answer candidates when
training the silver VisDial data.
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Figure 1. A detailed architecture of our proposed model. We propose the encoder-decoder model where the encoder aggregates the given
multimodal context, and the decoder generates the target sentence. (b): a more detailed view of the encoder. TRM and Co-TRM denote the
transformer module and the co-attentional transformer module, respectively. ⊕ denotes the concatenation operation.

VisDial v1.0 (test-std)

Model NDCG↑ MRR↑ R@1↑ R@5↑ R@10↑ Mean↓
CorefNMN [17] 54.70 61.50 47.55 78.10 88.80 4.40
RvA [25] 55.59 63.03 49.03 80.40 89.83 4.18
Synergistic [11] 57.32 62.20 47.90 80.43 89.95 4.17
ReDAN [9] 61.86 53.13 41.38 66.07 74.50 8.91
DAN [13] 57.59 63.20 49.63 79.75 89.35 4.30
FGA [34] 52.10 63.70 49.58 80.97 88.55 4.51
VD-BERT [39] 59.96 65.44 51.63 82.23 90.68 3.90
VisDial-BERT [24] 63.87 67.50 53.85 84.68 93.25 3.32

Student (ours) 64.91 68.44 55.05 85.18 93.35 3.23

P1+P2† [28] 71.60 48.58 35.98 62.08 77.23 7.48
MCA† [1] 72.47 37.68 20.67 56.67 72.12 8.89
SGL+KT† [14] 72.60 58.01 46.20 71.01 83.20 5.85
VD-BERT† [39] 74.54 46.72 33.15 61.58 77.15 7.18
UTC† [5] 74.32 50.24 37.12 63.98 79.88 6.48
VisDial-BERT† [24] 74.47 50.74 37.95 64.13 80.00 6.28

Student† (ours) 71.76 68.09 55.18 83.68 91.93 3.57

Table 1. Test-std performance of the discriminative model on the VisDial v1.0 dataset. ↑ indicates higher is better. ↓ indicates lower is better.
† denotes the use of dense labels.

Results on VisDial v1.0 test split. We compare the student
model with the state-of-the-art approaches in the discrimi-
native task, consisting of VisDial-BERT [24], UTC [5], VD-
BERT [39], SGL+KT [14], P1+P2 [28], MCA [1], FGA [34],
ReDAN [9], DAN [13], Synergistic [11], RvA [25], and
CorefNMN [17]. As shown in the upper part of Table 1,
GST outperforms the state-of-the-art approaches on all eval-
uation metrics in the VisDial v1.0 test-standard split. It is
worth noticing that GST boosts NDCG 1.04% (63.87 →
64.91) compared with the VisDial-BERT model, whose con-
figuration is almost the same as the student except for the
use of the silver VisDial data. Furthermore, recent studies

finetune the discriminative VisDial models on the densely
annotated labels1 in the validation dataset and evaluate the
models on the test set to boost NDCG. The dense annotation
finetuning yields considerable improvements on NDCG and
counter-effect on other metrics (i.e., MRR, R@k, and Mean)
due to the trade-off relationship [24] between NDCG and
the others. To mitigate such performance polarization, we
follow the knowledge transfer technique in SGL+KT [14]
when using the dense labels. In the below part of Table 1,
the student model still shows competitive performance on
NDCG, maintaining powerful performance on other metrics.

1https://visualdialog.org/challenge/2019#evaluation



Model PPL MCR IIR Iteration VisDial v1.0 (val)

NDCG↑ MRR↑ R@1↑ R@5↑ R@10↑ Mean↓
Teacher 0 64.50 52.06 42.04 62.92 71.06 14.54
Teacher (w/ CPT) ✓ 0 63.59 51.70 41.99 61.88 68.62 16.21

Student (iter1, w/o PPL) ✓ ✓ 1 63.96 52.33 42.68 62.52 69.47 15.56
Student (iter1, w/o MCR) ✓ ✓ 1 63.71 52.49 42.56 62.87 70.00 15.21
Student (iter1, w/o IIR) ✓ ✓ 1 64.57 52.33 42.10 63.46 71.54 14.31
Student (iter1) ✓ ✓ ✓ 1 65.06 52.84 42.74 63.66 71.30 14.60
Student (iter2) ✓ ✓ ✓ 2 65.46 53.04 43.15 63.63 71.00 14.73
Student (iter3) ✓ ✓ ✓ 3 65.47 53.19 43.08 64.09 71.51 14.34

Table 2. Ablation study on the VisDial v1.0 validation split. CPT denotes continued pre-training.

Model Pre-train # Images VisDial v1.0 (val)

NDCG↑ MRR↑
BLIP [19] 129M - 69.41

Student (ours) 6.7M 65.92 69.51

Table 3. Comparison with BLIP [19] on the VisDial v1.0 validation
split. The Pre-train # Images denotes the number of utilized images
before finetuning on the VisDial v1.0 data.

Results on VisDial v1.0 validation split. We also com-
pare GST with the state-of-the-art vision-and-language pre-
training model, BLIP [19]. The BLIP model is trained on the
large-scale image-text datasets, such as Laion-400M [33],
CC12M [4], CC3M [37], COCO [22], Visual Genome [18],
and SBU captions [26]. Then, the model is finally fine-
tuned on VisDial data. GST trains the student model on
nearly 6.7M images, including 3.1M images (CC3M [37]
and VQA [3]) to pretrain ViLBERT [23] and 3.6M images fil-
tered from CC12M [4] to generate and train synthetic dialog
data. As shown in Table 3, GST shows competitive perfor-
mance on the VisDial v1.0 validation split, outperforming
BLIP on MRR. It is noticeable that the BLIP model utilizes
nearly twenty times more images than GST. It indicates that
GST is effective and sample-efficient.

B.2. Ablation study

We perform an ablation study to illustrate the effect of
each component in GST. We report the performance of four
ablative models: student w/o PPL, student w/o MCR, student
w/o IIR, and teacher w/ CPT. Student w/o PPL denotes the
model that utilizes all generated QA pairs without applying
the perplexity-based data selection. Student w/o MCR does
not inject noises into the inputs of the student model. Student
w/o IIR utilizes the entire CC12M [4] images to generate
the silver VisDial data without applying in-domain image
retrieval. It is the same model as the student-iter1-full in
Section 4.3. Lastly, the teacher with continued pre-training
(CPT) continues to perform pre-training with image-caption
pairs in the silver VisDial data. CPT is proposed to identify

the effect of utilizing additional vision-and-language data.
Specifically, masked language modeling loss and masked
image region loss are optimized by following ViLBERT [23].

In Table 2, we observe all components (i.e., PPL, MCR,
and IIR) play a significant role in boosting the performance.
Notably, by comparing the student model with the student
w/o IIR, we find that utilizing the entire Web images does
not contribute to an accurate answer prediction. Moreover,
we observe that CPT results in a considerable drop in perfor-
mance. We conjecture that it is due to low-precision image
captions in the CC12M dataset, as mentioned in the paper [4].
But the student still shows competitive performance even if
it also utilizes the captions in the dialog history. Finally, the
iterative training monotonically improves the performance,
similar to the robustness results in Section 4.3.

B.3. Do performance improvements come from a
larger computational cost?

It takes more computational costs to train the student
model than to train the teacher model due to the silver Vis-
Dial data. Accordingly, we perform an analysis to prove that
the performance improvements do not merely come from
larger computational costs. The training time of the teacher
model is about 1 day with one NVIDIA A100 GPU. It takes
5 days to train the student model with three iterations (i.e.,
iter3). Accordingly, we compare the ensemble of 5 teacher
models with the student model with the iter3. We ensemble
5 teacher models with different weight initialization and av-
erage logits for 5 teacher models to predict the answer. The
results are shown in Table 4. The student model outperforms
the ensembles of 5 teacher models on both metrics. It indi-
cates that the improvements from GST do not merely come
from increased computational costs.

B.4. The QA utilization across different iterations

We identify how many QA pairs in the silver VisDial data
are actually utilized after applying perplexity-based data
selection (i.e., PPL). Accordingly, we define QA utilization
as the proportion of utilized QA pairs in the silver VisDial
data. The QA utilization across different iterations is shown



VisDial v1.0 (val)

Model NDCG↑ MRR↑
Teacher (single model) 64.50 52.06
Teacher (5 ensembles) 64.82 52.51

Student (single model) 65.47 53.19

Table 4. Comparison between the student model with the ensemble
of the five teacher models on balanced computational costs.

Model QA Utilization

Student (iter1) 32.52%
Student (iter2) 39.06%
Student (iter3) 46.40%

Table 5. We define QA utilization as the proportion of utilized QA
pairs in the silver VisDial data after applying perplexity-based data
selection (i.e., PPL). The selection threshold τ is fixed at 50.

in Table 5. We observe that the QA utilization increases
as the iteration proceeds. It implies that the student model
leverages more data as the iteration proceeds, and more
importantly, the average perplexity of the generated answers
gradually decreases. We argue that the drop of the answer
perplexity is closely related to the student model being more
confident and remaining low-entropy [10, 38].

C. Further qualitative analysis
C.1. More visualization of silver data

We visualize more silver data based on the image-caption
pairs in the Conceptual Captions (CC12M) [4] dataset. As
shown in Figure 3, the questioner and the student models
generate diverse and correct visual dialog data, although
the image caption data is noisy. For instance, the image
caption in the fourth example (i.e., Luckily the woman s
daughter adopted a puppy from litter so that poppy can keep
in touch with it) is not well grounded with the given image.
Still, our proposed models produce the visually-grounded
QA samples. Finally, the student sometimes fails to generate
correct answers (the red-colored text), similar to Figure 2.

C.2. Analysis of silver and gold answers.

We visualize the ground-truth answer (i.e., the gold an-
swer) and the answer predictions from the student and the
teacher models given the same context. As shown in Fig-
ure 2, the student model indeed produces correct answers
compared with the teacher model. Moreover, both models
produce many correct or plausible answers, although the
predicted answers differ from the gold answers (see the blue-
colored text). For instance, for the last question in the third
example (i.e., Is she wearing a bathing suit?), the student
answers “wetsuit” to the question, although the ground-truth

answer is “no”. We conjecture that the ability to generate
such different yet correct answers is evaluated as a high
NDCG performance; NDCG considers all relevant responses
in the answer candidates.

D. Implementation details
We integrate the vision-and-language encoder [23] with

the transformer decoder for sequence generation (i.e.,
BERTBASE [31]) to train the teacher, the questioner, and
the student. The decoder has 12 layers of transformer blocks,
with each block having 12 attention heads and a hidden
size of 768. The maximum sequence length of the encoder
and the decoder is 256 and 25, respectively. We extract
the feature vectors of the input images by using the Faster
R-CNN [2,30] pre-trained on Visual Genome [18]. The num-
ber of bounding boxes for each image is fixed to 36. We set
the threshold for PPL τ to 50. We train on one A100 GPU
with a batch size of 72 for 70 epochs. Training time takes
about 3 days. We use the Adam optimizer [15] with an initial
learning rate 1e-5. The learning rate is warmed up to 2e-5
until 10k iterations and linearly decays to 1e-5. In visually-
grounded dialog generation, the questioner and the teacher
decode the sequences using the top-k sampling [8, 12, 29]
with k = 7 and the temperature of 0.7. We use the top-k
sampling since its computation is cheap yielding accurate
and diverse sequences. Furthermore, we apply the 4-gram
penalty [16, 27] when generating visual questions to ensure
that no 4-gram appears twice in the questions for each dialog.

E. Discussion
E.1. Relationship between self-supervised pre-

training and generative self-training.

We develop the teacher, the questioner, and the student
models on top of ViLBERT [23] which leverages vision-and-
language pre-training. Thus, the teacher can be understood
as a typical model that follows the pretrain-then-transfer
learning strategy mentioned in the introduction, whereas
the student leverages both pre-training and generative self-
training. By comparing the student with the teacher, we
identify that self-supervised pre-training and GST are com-
plementary modeling capabilities.

E.2. Limitations and future work.

One of the major limitations of our approach is the learn-
ing efficiency of the student model. We demonstrate the
effectiveness of our proposed method, but there can be more
efficient ways to improve the visual dialog model. For ex-
ample, our method generates the dialog data without con-
sidering the difficulty of the question. We believe that the
competency-aware or curriculum-based visual dialog gener-
ation can make our proposed self-training algorithm more
efficient and powerful. We will leave it as a future work.



Figure 2. A visualization of answer predictions from the student and the teacher model. The red-colored text denotes an incorrect answer.
The blue-colored text indicates the prediction different from the ground-truth answer, but it seems correct or plausible.



Figure 3. A visualization of the silver VisDial data based on the image-caption pairs in the Conceptual Captions 12M (CC12M) [4] dataset.
The red-colored text denotes an incorrect answer.

E.3. Ethical considerations.

Since GST generates the visually-grounded dialogs, our
proposed models have the potential to produce biased and
offensive language, although arguably to a lesser extent than
the open-domain dialog [20,21,32,35,36,40]. We attempt to
mitigate ethical concerns such as biases against people of a
certain gender, race, age, and ethnicity or the use of offensive
content. Our proposed method utilizes the images and the

captions in the Conceptual 12M dataset [4], where several
data cleansing processes (e.g., the offensive content filtering
or replacing each person name with the special <PERSON>
token) have been conducted. At least, we could not find any
conversation violating the ethical considerations in a manual
inspection by visualizing ∼100 synthetic dialogs.
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