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Overview. The supplementary materials are organized as:

* Section A shows a detailed model architecture.
» Section B presents further quantitative analysis.
* Section C presents further qualitative analysis.
* Section D presents implementation details.

* Section E shows discussion, including limitations, fu-
ture work, and ethical considerations.

A. Details of model architecture

A detailed architecture of our proposed model is pre-
sented in Figure 1. We use the encoder-decoder model,
where the encoder aggregates the multimodal context, and
the decoder generates the target sentence using the hidden
states of the encoder. The answerer models (i.e., the student
and the teacher) utilize the given image, the dialog history,
and the question as the context. On the other hand, the ques-
tioner uses the given image and the dialog history as context
to generate the question.

We employ the VILBERT model [23] as our encoder.
We employ the BERTg,sg model [7] for sequence genera-
tion [31] as our autoregressive decoder. The decoder has 12
layers of transformer blocks, with each block having 12 at-
tention heads and a hidden size of 768. We present a detailed
view of the encoder in (b) for Figure 1. The encoder consists
of the vision stream and the language stream. The language
stream is the same model as the decoder (i.e., BERTza55),
which has 12 layers of transformer blocks. The vision stream
has 6 layers of transformer blocks, with each block having 8
attention heads with a hidden size of 1024. The co-attention
layers connect the 6 transformer layers in the vision stream
to the last 6 transformer layers in the language stream. The
encoder concatenates the hidden states of each stream and
passes them to the decoder. The decoder generates the target
sentence by using them.
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B. Further quantitative analysis
B.1. Experiments on the discriminative models

In this subsection, we discuss the details regarding GST
for the discriminative visual dialog. We first describe how
we can adapt GST to the discriminative models and then
show the results on VisDial v1.0 test-standard split.

Model architecture. Although our main focus is the genera-
tive model, we conduct additional experiments to identify
the effect of GST in the discriminative VisDial model. Our
proposed models (i.e., the student, the teacher, and the
questioner) are based on encoder-decoder architecture where
the encoder is based on the vision-and-language encoder
model [23], and the decoder is the transformer decoder [31].
In this experiment, we remove the decoder model, so
the student is based on the encoder-only architecture, the
same model architecture as the VILBERT model [23]. We
describe more details in the following subsection.

Tricks for adapting to a discriminative task. The goal
of the discriminative task is to retrieve the ground-truth an-
swer from a list of answer candidates. Therefore, it implies
that the gold VisDial dataset [6] contains the pre-defined
answer candidates for each question to train and evaluate the
discriminative models. However, the silver VisDial dataset
generated by our proposed models does not include the an-
swer candidates since the dataset is generated to train the
generative models that do not need the answer candidates.
To circumvent this issue, GST first trains the student model
for the generative task, i.e., the encoder-decoder model, on
the silver VisDial data. Then, we extract the trained weights
of the encoder in the student and initialize the encoder-only
model with the weights. Finally, the encoder-only model
is trained to retrieve the ground-truth answer from the list
of answer candidates using the gold VisDial dataset. This
trick circumvents the need for the answer candidates when
training the silver VisDial data.
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Figure 1. A detailed architecture of our proposed model. We propose the encoder-decoder model where the encoder aggregates the given
multimodal context, and the decoder generates the target sentence. (b): a more detailed view of the encoder. TRM and Co-TRM denote the
transformer module and the co-attentional transformer module, respectively. @ denotes the concatenation operation.

VisDial v1.0 (test-std)

Model NDCGt MRR{ R@I+ R@5F R@107 Mean)
CorefNMN [17] 5470 6150 4755 78.10  88.80  4.40
RVA [25] 5559  63.03 49.03 8040 89.83  4.18
Synergistic [11] 5732 6220 47.90 8043  89.95  4.17
ReDAN [9] 61.86  53.13 4138 6607 7450 891
DAN [13] 5759 6320 49.63 7975 8935 430
FGA [34] 5210 6370 4958 80.97  88.55 451
VD-BERT [3Y] 59.96 6544 51.63 8223  90.68  3.90
VisDial-BERT [24]  63.87  67.50 53.85 84.68 9325 332
Student (ours) 6491 6844 5505 8518 9335  3.23
P1+P21 [28] 71.60  48.58 3598 62.08 7723 748
MCAT® [1] 7247 3768 2067 5667 7212  8.89
SGL+KT} [14] 7260 5801 4620 7101 8320 585
VD-BERT} [39] 7454 4672 3315 6158 7715 7.8
UTCH [5] 7432 5024  37.12 6398  79.88 648
VisDial-BERT{ [24] 7447 5074 3795 64.13 8000 628
Student? (ours) 7176 68.09 5518 83.68 9193  3.57

Table 1. Test-std performance of the discriminative model on the VisDial v1.0 dataset. 1 indicates higher is better. | indicates lower is better.

t denotes the use of dense labels.

Results on VisDial v1.0 test split. We compare the student
model with the state-of-the-art approaches in the discrimi-
native task, consisting of VisDial-BERT [24], UTC [5], VD-
BERT [39], SGL+KT [14], P1+P2 [28], MCA [ 1], FGA [34],
ReDAN [9], DAN [13], Synergistic [1 1], RvA [25], and
CorefNMN [17]. As shown in the upper part of Table I,
GST outperforms the state-of-the-art approaches on all eval-
uation metrics in the VisDial v1.0 test-standard split. It is
worth noticing that GST boosts NDCG 1.04% (63.87 —
64.91) compared with the VisDial-BERT model, whose con-
figuration is almost the same as the student except for the
use of the silver VisDial data. Furthermore, recent studies

finetune the discriminative VisDial models on the densely
annotated labels' in the validation dataset and evaluate the
models on the test set to boost NDCG. The dense annotation
finetuning yields considerable improvements on NDCG and
counter-effect on other metrics (i.e., MRR, R@k, and Mean)
due to the trade-off relationship [24] between NDCG and
the others. To mitigate such performance polarization, we
follow the knowledge transfer technique in SGL+KT [14]
when using the dense labels. In the below part of Table 1,
the student model still shows competitive performance on
NDCG, maintaining powerful performance on other metrics.

Uhttps://visualdialog.org/challenge/2019#evaluation



VisDial v1.0 (val)

Model PPL MCR 1IIR [Iteration

NDCGT MRRT R@1T R@51 R@I10T Mean]
Teacher 0 64.50 52.06 42.04 6292 71.06 14.54
Teacher (w/ CPT) v 0 63.59 51.70 4199 61.88 68.62 16.21
Student (iterl, w/o PPL) v v 1 63.96 5233 42,68 6252 69.47 15.56
Student (iter1, w/o MCR) v v 1 63.71 5249 4256  62.87 70.00 15.21
Student (iter1, w/o IIR) v v 1 64.57 5233 42,10 63.46 71.54 14.31
Student (iterl) v v v 1 65.06 52.84 4274  63.66 71.30 14.60
Student (iter2) v v v 2 65.46 53.04 43.15 63.63 71.00 14.73
Student (iter3) v v v 3 65.47 53.19 43.08 64.09 71.51 14.34

Table 2. Ablation study on the VisDial v1.0 validation split. CPT denotes continued pre-training.

VisDial v1.0 (val)

Model Pre-train # Images " 7
NDCG? MRR?

BLIP [19] 129M - 69.41

Student (ours) 6.7M 65.92 69.51

Table 3. Comparison with BLIP [19] on the VisDial v1.0 validation
split. The Pre-train # Images denotes the number of utilized images
before finetuning on the VisDial v1.0 data.

Results on VisDial v1.0 validation split. We also com-
pare GST with the state-of-the-art vision-and-language pre-
training model, BLIP [19]. The BLIP model is trained on the
large-scale image-text datasets, such as Laion-400M [33],
CCI12M [4], CC3M [37], COCO [22], Visual Genome [18],
and SBU captions [26]. Then, the model is finally fine-
tuned on VisDial data. GST trains the student model on
nearly 6.7M images, including 3.1M images (CC3M [37]
and VQA [3]) to pretrain VILBERT [23] and 3.6M images fil-
tered from CC12M [4] to generate and train synthetic dialog
data. As shown in Table 3, GST shows competitive perfor-
mance on the VisDial v1.0 validation split, outperforming
BLIP on MRR. It is noticeable that the BLIP model utilizes
nearly twenty times more images than GST. It indicates that
GST is effective and sample-efficient.

B.2. Ablation study

We perform an ablation study to illustrate the effect of
each component in GST. We report the performance of four
ablative models: student w/o PPL, student w/o MCR, student
w/o IIR, and teacher w/ CPT. Student w/o PPL denotes the
model that utilizes all generated QA pairs without applying
the perplexity-based data selection. Student w/o MCR does
not inject noises into the inputs of the student model. Student
w/o IIR utilizes the entire CC12M [4] images to generate
the silver VisDial data without applying in-domain image
retrieval. It is the same model as the student-iterl-full in
Section 4.3. Lastly, the teacher with continued pre-training
(CPT) continues to perform pre-training with image-caption
pairs in the silver VisDial data. CPT is proposed to identify

the effect of utilizing additional vision-and-language data.
Specifically, masked language modeling loss and masked
image region loss are optimized by following VILBERT [23].

In Table 2, we observe all components (i.e., PPL, MCR,
and IIR) play a significant role in boosting the performance.
Notably, by comparing the student model with the student
w/o IR, we find that utilizing the entire Web images does
not contribute to an accurate answer prediction. Moreover,
we observe that CPT results in a considerable drop in perfor-
mance. We conjecture that it is due to low-precision image
captions in the CC12M dataset, as mentioned in the paper [4].
But the student still shows competitive performance even if
it also utilizes the captions in the dialog history. Finally, the
iterative training monotonically improves the performance,
similar to the robustness results in Section 4.3.

B.3. Do performance improvements come from a
larger computational cost?

It takes more computational costs to train the student
model than to train the teacher model due to the silver Vis-
Dial data. Accordingly, we perform an analysis to prove that
the performance improvements do not merely come from
larger computational costs. The training time of the teacher
model is about 1 day with one NVIDIA A100 GPU. It takes
5 days to train the student model with three iterations (i.e.,
iter3). Accordingly, we compare the ensemble of 5 teacher
models with the student model with the iter3. We ensemble
5 teacher models with different weight initialization and av-
erage logits for 5 teacher models to predict the answer. The
results are shown in Table 4. The student model outperforms
the ensembles of 5 teacher models on both metrics. It indi-
cates that the improvements from GST do not merely come
from increased computational costs.

B.4. The QA utilization across different iterations

We identify how many QA pairs in the silver VisDial data
are actually utilized after applying perplexity-based data
selection (i.e., PPL). Accordingly, we define QA utilization
as the proportion of utilized QA pairs in the silver VisDial
data. The QA utilization across different iterations is shown



VisDial v1.0 (val)
Model NDCG? MRR?

Teacher (single model) 64.50 52.06
Teacher (5 ensembles) 64.82 52.51

Student (single model) 65.47 53.19

Table 4. Comparison between the student model with the ensemble
of the five teacher models on balanced computational costs.

Model QA Utilization
Student (iterl) 32.52%
Student (iter2) 39.06%
Student (iter3) 46.40 %

Table 5. We define QA utilization as the proportion of utilized QA
pairs in the silver VisDial data after applying perplexity-based data
selection (i.e., PPL). The selection threshold 7 is fixed at 50.

in Table 5. We observe that the QA utilization increases
as the iteration proceeds. It implies that the student model
leverages more data as the iteration proceeds, and more
importantly, the average perplexity of the generated answers
gradually decreases. We argue that the drop of the answer
perplexity is closely related to the student model being more
confident and remaining low-entropy [ 10, 38].

C. Further qualitative analysis
C.1. More visualization of silver data

We visualize more silver data based on the image-caption
pairs in the Conceptual Captions (CC12M) [4] dataset. As
shown in Figure 3, the questioner and the student models
generate diverse and correct visual dialog data, although
the image caption data is noisy. For instance, the image
caption in the fourth example (i.e., Luckily the woman s
daughter adopted a puppy from litter so that poppy can keep
in touch with it) is not well grounded with the given image.
Still, our proposed models produce the visually-grounded
QA samples. Finally, the student sometimes fails to generate
correct answers (the red-colored text), similar to Figure 2.

C.2. Analysis of silver and gold answers.

We visualize the ground-truth answer (i.e., the gold an-
swer) and the answer predictions from the student and the
teacher models given the same context. As shown in Fig-
ure 2, the student model indeed produces correct answers
compared with the teacher model. Moreover, both models
produce many correct or plausible answers, although the
predicted answers differ from the gold answers (see the blue-
colored text). For instance, for the last question in the third
example (i.e., Is she wearing a bathing suit?), the student
answers “wetsuit” to the question, although the ground-truth

answer is “no”. We conjecture that the ability to generate
such different yet correct answers is evaluated as a high
NDCG performance; NDCG considers all relevant responses
in the answer candidates.

D. Implementation details

We integrate the vision-and-language encoder [23] with
the transformer decoder for sequence generation (i.e.,
BERTgase [31]) to train the teacher, the questioner, and
the student. The decoder has 12 layers of transformer blocks,
with each block having 12 attention heads and a hidden
size of 768. The maximum sequence length of the encoder
and the decoder is 256 and 25, respectively. We extract
the feature vectors of the input images by using the Faster
R-CNN [2,30] pre-trained on Visual Genome [ | §]. The num-
ber of bounding boxes for each image is fixed to 36. We set
the threshold for PPL 7 to 50. We train on one A100 GPU
with a batch size of 72 for 70 epochs. Training time takes
about 3 days. We use the Adam optimizer [15] with an initial
learning rate le-5. The learning rate is warmed up to 2e-5
until 10k iterations and linearly decays to le-5. In visually-
grounded dialog generation, the questioner and the teacher
decode the sequences using the top-k sampling [8, 12,29]
with k¥ = 7 and the temperature of 0.7. We use the top-k
sampling since its computation is cheap yielding accurate
and diverse sequences. Furthermore, we apply the 4-gram
penalty [16,27] when generating visual questions to ensure
that no 4-gram appears twice in the questions for each dialog.

E. Discussion

E.1. Relationship between self-supervised pre-
training and generative self-training.

We develop the teacher, the questioner, and the student
models on top of VILBERT [23] which leverages vision-and-
language pre-training. Thus, the teacher can be understood
as a typical model that follows the pretrain-then-transfer
learning strategy mentioned in the introduction, whereas
the student leverages both pre-training and generative self-
training. By comparing the student with the teacher, we
identify that self-supervised pre-training and GST are com-
plementary modeling capabilities.

E.2. Limitations and future work.

One of the major limitations of our approach is the learn-
ing efficiency of the student model. We demonstrate the
effectiveness of our proposed method, but there can be more
efficient ways to improve the visual dialog model. For ex-
ample, our method generates the dialog data without con-
sidering the difficulty of the question. We believe that the
competency-aware or curriculum-based visual dialog gener-
ation can make our proposed self-training algorithm more
efficient and powerful. We will leave it as a future work.



Image & Caption W ________Queston _____| Student Model Teacher Model

: How many children are there? 3 3 4
: What is the time of the day? | can't tell that Daytime Daytime
: Can you see a soccer ball? Yes Yes Yes
: What is the children wearing? Soccer shirts and pants Uniforms Uniforms
: What is the color of the ball? White and red White and red White with red
: Can you see a spectator? No No No
: Are they happy enjoying? Yes Yes Yes
The 2 children's teams are ' \{xz;talfetcvee:grl‘c;r :fhter:;gg or No Brown They all ::i‘:,e brown
playing sc;]cctel: against Q9 : Can you see the sky? No No No
each other Q10 :Is there any female? No No No
: Is there any snow on the ground? Yes Yes there is Yes tons
: Are they dressed for skiing? Yes Yes Yes
: Color shirt is the woman wearing? Blue and white Blue and white jacket Black
: Is there any trees around? There are Yes Yes
: What kind of day is it? A snowy day Sunny Sunny
: Are the man taller than the woman? Yes, they are Yes Yes
: How many hats are in the picture? 3 3 hats 2
Q8 : Are they all wearing gloves? Yes, they are all Yes Only two of them are
2 men and a woman are on N
slopes wearing their skies Q9 :Do they seem to I:l>e lenjoy the day? Ye§ Yes, they do Yes, they do
Q10 : What time of day is it? Morning Daytime Noon
: Is the picture in color? Yes Yes Yes
: Are they the only ones in the water? No No No
: Can you see the beach? Yes Yes Yes
: Are there people on the beach? Yes Yes Yes
: How old is the man? 20’s 20’s 20’s
: What color is his hair? Brown Brown Black
: How many hats are in the picture? Early 20’s 20s Same
A man is teaching a woman Q8 : What color is her hair? Brown Dark brown Brown
. Q9 : What color is the surfboard? White White White
how to ride a surfboard N . .
Q10 : Is she wearing a bathing suit? No Wetsuit Yes
Q1 :Is the man wearing a helmet? No No No
Q2 : s this outdoors? Yes Yes Yes
Q3 :lsitasunny day? Yes Yes Yes
Q4 :lIs the man wearing a hat? No No No
Q5 : Can you see graffiti? No No No
Q6 :Is he wearing elbow pads? No No No
Q7 :lIs he wearing shorts? No No No, jeans
Q8 : Can you see anyone else? Yes Yes Yes, but they are blurry
Q9 : What color is his board? Black Black Black
Ayoung manperforms 8 | 14 . hat color is his shirt? White with brown spots White White
trick on a skateboard
Q1 :lIs it daytime? Yes Yes Yes
Q2 :lsthe sun out? Yes Yes Yes
Q3 : How old is the woman? 24 20s Late twenties
Q4 : s she alone? Yes Yes Yes
Q5 :Is she wearing sunglasses? No No No
Q6 : Is she carrying anything else with her? No A bag A purse
v / Q7 : s she wearing sneakers? Yes Yes No
. ’ Q8 : What color is her shirt? Wearing a black jacket Black Black
A woman rides her bike on a P
sidewalk next to a fence Q9 :lsshe §m|l|ng? : No Yes No
Q10 : Where is she going? West on the road Not sure She’s at a park
Q1 :ls the man young? I'd say early 20s Yes Yes
Q2 :ls he dressed casual? Yes, he is Yes, t-shirt and jeans | Yes, jeans, a polo shirts
Q3 :Is his hair short or longish? It is shoulder length It is medium length It’s pretty short
Q4 : What color is his shirt? It is medium brown Navy blue Blue with white writing
Q5 :ls he wearing jeans? Yes, he is Yes, he is Yes, he is
Q6 : Is this in the city? Looks like a suburb area Looks like it Yes, it looks like it
Q7 : Are there any trees around? Yes, 1 tree A few in the background Yes, | can see one
Q8 : How about cars? No cars | don’t see any cars No cars are in the photo
A s d h Q9 : Are there any other people? No, he is alone No other people No
oage 5 yelow, ‘?i’rr;th;dsr::f " Q10 Is it sunny? Yes, itis o eyt | lcan't really tell

Figure 2. A visualization of answer predictions from the student and the teacher model. The red-colored text denotes an incorrect answer.
The blue-colored text indicates the prediction different from the ground-truth answer, but it seems correct or plausible.



[ Image = | Machine Conversation (Silver VisDial)

C :One of the bedrooms at basement level

D1 :Can you see the bed? Yes

D2 :lIsit made? Yes

D3 : What color is the bedspread? White and blue

D4 : Are there any pillows? Can’t see any

D5 : s there a window? Yes

D6 : Are there curtains on the window? No they are open

D7 : Are there curtains? There are no curtains

D8 : Can you see out of the window? Yes | can see some trees
D9 : Can you see any people? No people no

D10 : Can you tell what kind of trees? No they are very small and green

C :Cars at the intersection of FM 1960 and Jones Road in northwest Harris County
D1 : Are there any buses? No

D2 : Are there any trees? No

D3 : How many cars are there? More than 10

D4 : Are there any people? No

D5 : Are there any animals? No

D6 : Can you see the sky? Yes

D7 : What color is the sky? Gray

D8 :ls it cloudy? Yes it’s cloudy

D9 : Can you see any buildings? Yes about 4 buildings
D10 : Is it night or day? Daytime

C : Coffee Bay: The green Wild Coast-line

D1 :ls there a boat in the water? No

D2 :Is the water calm? No, it looks choppy

D3 : Are there any animals? | can't see any

D4 : Are there any people in the image? No people

D5 : Are there any buildings? No, it's a hill and there are no buildings
D6 : Are there any vehicles? No vehicles, it's a mountain

D7 :lIs the mountain covered in snow? No, it's a very green mountain
D8 : Are there any trees? No trees, just grass

D9 :lsit sunny? It's very sunny

D10 : Are there any rocks in the grass? Yes, there are rocks

C : Luckily the woman s daughter adopted a puppy from litter so that poppy \
can keep in touch with it

D1 :ls this in color? Yes

D2 :Is the photo well lit? Yes

D3 : s this a close up? Yes

D4 : What color is the puppy? Brown

D5 : What color is her leash? She doesn’t has a leash

D6 : What color is woman'’s hair? | can only see her hand

D7 :Is this a professional photo? No it’s not

D8 : Is this a picture showing the baby’s parents? No it’s an adult mother

D9 : Are they outside? No they are indoors

D10 : Is this a living room? | can’t tell

C : Smiled beautiful mulatto woman is preparing to make a meal from fresh \
vegetables on the table on the modern kitchen

D1 : How old does the woman appear to be? In her twenties

D2 :Is she the only person visible in the photo? Yes

D3 : What color is the kitchen counter? Tan

D4 : Can you tell what type of food she is making? No

D5 :Is the kitchen clean? Yes

D6 : What color is her hair? Black

D7 :Is she using a cutting board? Yes

D8 : What color is it? Wood

D9 : Does she appear to be making any type of vegetables? Yes she is cooking

D10 : What kind of vegetables are in the kitchen? Tomatoes

Figure 3. A visualization of the silver VisDial data based on the image-caption pairs in the Conceptual Captions 12M (CC12M) [4] dataset.

The red-colored text denotes an incorrect answer.

E.3. Ethical considerations.

Since GST generates the visually-grounded dialogs, our
proposed models have the potential to produce biased and
offensive language, although arguably to a lesser extent than
the open-domain dialog [20,21,32,35,36,40]. We attempt to
mitigate ethical concerns such as biases against people of a
certain gender, race, age, and ethnicity or the use of offensive
content. Our proposed method utilizes the images and the

captions in the Conceptual 12M dataset [4], where several
data cleansing processes (e.g., the offensive content filtering
or replacing each person name with the special <PERSON>
token) have been conducted. At least, we could not find any
conversation violating the ethical considerations in a manual
inspection by visualizing ~100 synthetic dialogs.
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