
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#3954

CVPR
#3954

CVPR 2023 Submission #3954. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Invertible Neural Skinning (Appendix)

Paper ID 3954

A. Implementation Details
A.1. Sampling Points

Following SNARF, we sample 200K points at every
frame of the sequence. Half of these points (100K) are
near the mesh (scan) surface, which are obtained by first
sampling points on the mesh surface via Poisson disk sam-
pling and followed by displacement with isotropic Gaussian
noise (of σ = 0.01). Remaining half (100K) points are sam-
pled uniformly within a bounding box scaled to 110% of the
original bounding box.

A.2. Hyperparameters and Training Details

We trained all our models on a single Tesla V100 GPU
for 250 epochs, which took nearly 40 hours on average. We
used a learning rate of 1e−4 to train the PINs, while using
a learning rate of 1e−3 for remaining modules. We used
Adam [5] optimizer, with a linear warmup and no learn-
ing rate decay. PyTorch [9] is used for all the experiments.
Please refer to Table 1 for full list.

A.3. Metrics

Given set of sampled points P to be evaluated, we can
represent the joint tuple of any point, its ground truth occu-
pancy (which can be either 0 or 1), and predicted occupancy
as (pi

d, g
i, hi) ∀ pi

d ∈ P respectively. Then Intersection
over Union (IoU) can be computed as follows:

IoU =
∑
pi

d∈P

gi ∩ hi

gi ∪ hi
(1)

To convert predicted probability to binary occupancy, we
simply check if it is greater than 0.5. IoU Bounding Box op-
erates with points sampled uniformly in the space, whereas
Surface IoU operates with points sampled close to the body
as described in Section A.1.

B. Data
CAPE. CAPE originally contains 15 subjects, with each

subject wearing 1-6 different types of clothing, and per-
forming 3-74 different actions. On average, it contains
nearly 249 frames for every subject-cloth pair. Due to high
variance as well as high number of subject-cloth pairs, we
use a subset of CAPE which contains 15 sequences of 13
subjects containing all 8 different types of clothings. A
clothing in CAPE is denoted by a joint string of upper and

lower body garment, for example, a subject wearing a blazer
and pants is annotated as blazerlong, and so on.

C. Invertible Neural Network

C.1. Initialization

We found that initializing the Pose-conditioned Invert-
ible Networks (PINs) as identity modules stabilizes train-
ing, and allows the LBS network to train better. For this,
we initialize the weights and biases of the last layer of the
operation maps mr and mt (shown in Figure 2) as zeros.

C.2. Volume Preservation

Previous works in INNs [2, 3, 6] operating on high-
dimensional (≥ 512-d) spaces constrained the Jacobian be-
tween input and output to an triangular matrix. This ensured
that the Jacobian determinant, used for density modeling,
was not expensive to compute. Determinant of a triangular
matrix is simply multiplication of its diagonal. However,
this prevented these works from using 2D operators such as
rotation. We note that such a requirement is unnecessary
in our setting, where Jacobian determinant is not needed.
Additionally, using rotations also helps to preserve volume
between the input and output spaces.

Next, we show that our PINs consisting of only rotations
and translations are volume preserving. Note that to show a
transform is volume preserving it is sufficient to show that
the determinant of the Jacobian of this transform is one.
From Equations 5 and 10, we can express the transform rep-
resented by a single 2D coupling layer as:

x′ = xcos(γxy)− ysin(γxy) + tx

y′ = xsin(γxy) + ycos(γxy) + ty

z′ = z

Then Jacobian of this transform becomes:

J =

cos(γxy) −sin(γxy) 0
sin(γxy) cos(γxy) 0

0 0 1

 (2)

And determinant of the above Jacobian is one, i.e. |J| = 1.
Since, our PINs are composed of chaining together such
coupling layers described in Equation 13, the overall de-
terminant is also one. Hence volume is preserved within
PINs.

1

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#3954

CVPR
#3954

CVPR 2023 Submission #3954. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Hyperparameters Value # Hyperparameters Value

1 No. of Parameters in INS 1.80M 2 No. of Coupling Layers in Hd/Hc 18
3 No. of Parameters in PIN Hd/Hc 0.41M 4 No. of Parameters in Occupancy Network O 0.46M
5 No. of Parameters in LBS Network 53K 6 No. of Parameters in Bone Encoder 0.46M
7 Pose Embedding Dimension 120 8 Space Embedding Dimension 120
9 Space and Pose Embedding 240 10 PIN input and output Dimension 3
11 Number of epochs 250 12 Optimizer Adam
13 Batch size (DFAUST/CAPE) 12/8 14 Learning rate (INNs/Rest) 1e-4/1e-3
15 Warm-up learning rate factor 0.2 16 Warm-up iterations 2400
17 No. of points per batch 60000 18 Gradient clipping (L-2 Norm) 4.0

Table 1. Hyperparameters and Training configuration to train INS.

D. Gradients

Training INS requires calculating gradients of the Binary
Cross Entropoy (BCE) loss Lbce (Equation 18), with respect
to all the components. Let the weights of PINs Hc, Hd,
the LBS network wlbs, and the Occupancy network O be
denoted with σc, σd, σlbs, and σo respectively. Backprop-
agating through the occupancy network O and the PIN Hc

is straightforward:

∂Lbce

∂σo
=

∂Lbce

∂o
· ∂o

∂O(pc)
· ∂O(pc)

∂σo
(3)

∂Lbce

∂σc
=

∂Lbce

∂O(pc)
· ∂O(pc)

∂Hc(q∗
c)

· ∂Hc(q
∗
c)

∂σc
(4)

where o is the predicted occupancy. While the gradients for
LBS network wlbs and second PIN Hd are:

∂Lbce

∂σlbs
=

∂Lbce

∂Hc(q∗
c)

· ∂Hc(q
∗
c)

∂q∗
c

· ∂q∗
c

∂σlbs
(5)

∂Lbce

∂σd
=

∂Lbce

∂q∗
c

· ∂q∗
c

∂Hd(pt
d)

· ∂Hd(p
t
d)

∂σd
(6)

where q∗
c is the root of the Equation 17, and pt

d is the input
point. Pytorch’s automatic differentiation can handle the
gradients in Equations 22 and 23. However, to obtain gra-
dients w.r.t. q∗

c implicit differentiation is required, similar to
SNARF:

lbs(q∗
c ,θ

t)− pt
d = 0

⇔ ∂lbs(q∗
c ,θ

t)

∂σlbs
+

∂lbs(q∗
c ,θ

t)

∂q∗
c

· ∂q∗
c

∂σlbs
= 0

⇔ ∂q∗
c

∂σlbs
= −

(
∂lbs(q∗

c ,θ
t)

∂q∗
c

)−1

· ∂lbs(q
∗
c ,θ

t)

∂σlbs
(7)

And we can find gradients of q∗
c with respect to qt

d as fol-
lows:

lbs(q∗
c ,θ

t)− pt
d = 0

⇔ ∂lbs(q∗
c ,θ

t)

∂q∗
c

· ∂q∗
c

∂Hd(pt
d)

+ 1 = 0

⇔ ∂q∗
c

∂Hd(pt
d)

= −
(
∂lbs(q∗

c ,θ
t)

∂q∗
c

)−1

(8)

E. Miscellaneous Failed Experiments
In order to help with a future research in this direction we

list several ideas that have been tried in our project, which
however did not improve performance.

E.1. Invertible Residual Layers

Idea. Beyond the invertible space-splitting layers, we
also experimented with using invertible residual layers [1,
4]. These layers operate by limiting the Lipschitz constant
of the residual branch, which has be less than one in order
to guarantee invertibility. Inversion of these layers can be
achieved using a fixed-point iteration method, with conver-
gence rate exponential in the number of iterations.

Outcome. We tried chaining residual layers with cou-
pling layers alternately, and also placing them in the start
and end of the invertible networks. However, these setups
performed close or worse than without using residual lay-
ers, and were slower due to the expensive inversion pass.

E.2. Coupling Layers with Scales

Idea. Previous works CaDeX [7], and NeuralParts [8]
utilized invertible networks with scale and translation oper-
ations, following the architecture proposed in RealNVP [3].
Such a transform can be represented as:

x′ = xexp(sx) + tx

y′ = yexp(sy) + +ty

z′ = z

Outcome. When using these layers in our experiments we
encountered the following difficulties:

2

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVPR
#3954

CVPR
#3954

CVPR 2023 Submission #3954. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

• Unstable Training. Floating point overflows occurred
frequently during training due to the exponential scal-
ing term. Even after carefully tuned gradient clipping
and learning rate schedules, we encountered frequent
experiment failures.

• Squashing Effect. Since the scaling operator can lead
to very large outputs from INN, generally a sigmoid
squashing layer is used at the end to restrict the input
to a fixed range that matches output distribution. How-
ever, due to this sigmoid layer, the INN can no longer
be initialized as an Identity layer, even when all the ro-
tations are identity and translations are zero. This leads
to a squashing artefacts in outputs.

• Non-volume Preserving. The Jacobian of these lay-
ers [7] with scaling is not one, previously derived
Equation 2. Due to this additional regularization is
needed for training.

E.3. Pose-conditioned 3D rotation and translation
layers

Idea. We tried learning pose-conditioned global 3D ro-
tation and translation layers. We implemented it similar to
the coupling layers to predict rotation and translation pa-
rameters, but without any space conditioning.

Outcome. We did not find significant gains using this,
and decided against using them in the final version as they
had a big memory footprint. These layers often rotate the
canonical space creating issues during mesh extraction.

F. Visuals
We place all the qualitative results in the video file called

qual-video.mp4 of the supplementary material, and
discuss its contents below.

[Video Part-1] Pose-varying deformations in INS. In
the first part of the video, we visualize the deformations in-
troduced by PINs Hc and Hd under varying target poses
(shown in top right). Deformations introduced by Hc are
shown in the top-middle part, whereas those introduced by
Hd are shown in the bottom-left part shaded in green. We
demonstrate that INS is able to handle complex deforma-
tions of clothing across poses.

[Video Part-2] Baseline Comparison. In the second
part of the video, we compare our method INS against all
the five baselines discussed in Section 4.2 of the main pa-
per. While both the LBS baselines, and SNARF-NC suffers
from artifacts, we see that INS performs much better than
other methods.

[Video Part-3] INS Ablations. In the third part of the
video, we visualize results from various ablations reported
in Section 4.4 of the main paper. Here, we find that remov-
ing SIREN leads to an overly smooth surface, and removing

Figure 1. 1D and 2D Coupling Layers. We show comparison be-
tween both types of layers used in PINs. The bidirectional arrows
show invertible computations.

the LBS network makes it harder for the network to learn
limb movements correctly.

[Video Part-4] Texture Propagation. As INS can pre-
serve correspondences across poses, it becomes possible
to propagate mesh attributes such as texture across vari-
ous time frames. We conducted an experiment to test this,
where we applied texture to the pose-independent canon-
ical mesh. Next, we propagated this texture through the
INS network. We show the results of this experiment in
the fourth (and last) part of the video. We found that the
applied texture deformed realistically like clothing, while
being consistent across all frames, and was free of jittering.

To contrast and compare with the above experiment, we
conducted similar texture propagation using SNARF. Since,
SNARF decodes a separate mesh at each time-step, we color
this mesh using the same scheme for coloring INS canoni-
cal mesh above. Propagating this texture through the LBS
block, we find that it frequently leads to jittery artefacts
as the texture overflows across semantically different parts.
For example, the texture patch E4 applied to the blazer in a
particular frame, overflows onto pants in another frame, and
so on.

3

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

CVPR
#3954

CVPR
#3954

CVPR 2023 Submission #3954. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

F.1. 1D and 2D Coupling Layers

We visualize both 1D and 2D coupling layers together
in Figure 1 for better understanding. In 1D case the space-
pose aware conditioning gets conditioned on the 2D input,
which helps to improve expressiveness. In the 2D case, we
can make edits on an entire 2D plane conditioned on the 1D
input. We find out that these blocks provide complementary
benefits, thus we utilize both of them in the final architec-
ture.

References
[1] Jens Behrmann, Will Grathwohl, Ricky TQ Chen, David Du-

venaud, and Jörn-Henrik Jacobsen. Invertible residual net-
works. In International Conference on Machine Learning,
pages 573–582. PMLR, 2019. 2

[2] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice:
Non-linear independent components estimation. arXiv
preprint arXiv:1410.8516, 2014. 1

[3] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Ben-
gio. Density estimation using real nvp. arXiv preprint
arXiv:1605.08803, 2016. 1, 2

[4] Jörn-Henrik Jacobsen, Arnold W.M. Smeulders, and Edouard
Oyallon. i-revnet: Deep invertible networks. In International
Conference on Learning Representations, 2018. 2

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Int. Conf. Learn. Represent., 2015.
1

[6] Diederik P Kingma and Prafulla Dhariwal. Glow: Gener-
ative flow with invertible 1x1 convolutions. arXiv preprint
arXiv:1807.03039, 2018. 1

[7] Jiahui Lei and Kostas Daniilidis. Cadex: Learning canon-
ical deformation coordinate space for dynamic surface rep-
resentation via neural homeomorphism. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022. 2, 3

[8] Despoina Paschalidou, Angelos Katharopoulos, Andreas
Geiger, and Sanja Fidler. Neural parts: Learning expressive
3d shape abstractions with invertible neural networks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3204–3215, 2021. 2

[9] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Im-
perative Style, High-Performance Deep Learning Library. In
Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019. 1

4

	. Implementation Details
	. Sampling Points
	. Hyperparameters and Training Details
	. Metrics

	. Data
	. Invertible Neural Network
	. Initialization
	. Volume Preservation

	. Gradients
	. Miscellaneous Failed Experiments
	. Invertible Residual Layers
	. Coupling Layers with Scales
	. Pose-conditioned 3D rotation and translation layers

	. Visuals
	. 1D and 2D Coupling Layers

