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Attention Sintel Clean Dynamic Replica
Bad3px TEPE Bad1px TEPE

None 6.47 0.779 7.31 0.119
Space + Stereo 6.14 0.814 7.37 0.116

Space + Stereo + Time 6.02 0.753 5.50 0.120

Table 1. SST-Block Attention. We compare no attention (none),
spatial (space) and time attention.

Attention Sintel Clean Dynamic Replica
Bad3px TEPE Bad1px TEPE

None 6.42 0.940 7.41 0.117
Space 5.99 0.864 7.26 0.114

Space + Time 6.02 0.753 5.50 0.120

Table 2. Update Block Attention. A combination of space and
time attention helps to propagate information.

1. Additional Ablations

We ablate the proposed SST block and the choice of at-
tention in the update block. We train the model on Scene-
Flow [3] for 50k iterations with the same hyper-parameters
as in the main paper.

SST Block Attention We evaluate the choice of attention
types of the SST-Block in Tab. 3. We find that including at-
tention layers generally improves disparity estimation both
in terms of accuracy and temporal consistency. Attention
across space, stereo pairs and time achieves the best results.
Interestingly, time attention also improves accuracy, poten-
tially through the use of multiple viewpoints over time im-
proving the precise location of correspondences.

Update Block Attention In Tab. 2 we compare different
choices of attention inside the Update Block. The model
with a combination of space and time attention performs
well on both datasets. Similarly, improvements are gained
in both stereo and temporal metrics.

2. Implementation details

Here we provide additional implementation details.

Training For all the DR & SF dataset generalization ex-
periments, we sample the same number of frames from both
DR and SF. For temporal consistency experiments, we sam-
ple the same number of sequences from DR and SF.

We found that learnable positional encoding for time can
generalize better during inference on longer sequences. We
thus use learnable encoding for time and sin / cos Fourier
features for space.

Augmentations During training, we set image saturation
to a value sampled uniformly between 0 and 1.4. We
stretch right frames to simulate imperfect rectification: it is
stretched by a factor sampled uniformly from [2−0.2, 20.4].
Following [5], we simulate occlusions by randomly erasing
rectangular regions from each frame with probability 0.5.

Inference For better temporal consistency during infer-
ence, we split the input video into 20-frame chunks with
an overlap of 10 frames. We then apply the model to each
chunk and discard the first and the last 5 frames of each
prediction to compose the final sequence of disparity esti-
mations.

Space-Stereo-Time attention We add time and position
encoding to left and right input feature tensors and reshape
them to (B ∗ T, H

16 ∗ W
16 , d). Then we apply linear self-

attention [4] across space to both tensors and cross attention
across space between left and right tensors. Finally, we re-
shape left and right tensors to (B ∗ H

16 ∗
W
16 , T, d) and apply

standard attention across time.

3D CNN-based GRU For efficiency, each 3D GRU mod-
ule is composed of three separable height-width-time GRUs
with kernel sizes (1× 1× 5), (5× 1× 1), and (1× 5× 5).

Upsampling To pass the output of each update block g to
a higher resolution update block, we use a combination of
convex upsampling from RAFT [5] and standard bi-linear
upsampling.
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Method sec./frame

RAFT Stereo [2] 0.83
CODD [1] 1.04
DynamicStereo (Ours) 1.20

Table 3. Runtime analysis. We run each method on a video of
resolution 1280x720 on a GPU and report the average number of
seconds it takes the method to process one frame.

3. Limitations
While our method is more temporally consistent than

previous work, it still is not fully stable over time. This
partially comes form the fact that the method is evaluated in
a sliding window fashion resulting in low frequency oscil-
lations at the scale of the window size (1-2 sec). Extending
the window size is currently not possible due to memory
limitations.

As any stereo matching method, exceedingly large un-
textured scene parts such as walls and other surfaces are dif-
ficult to predict accurately. Learning from DynamicReplica
helps to learn priors to mitigate this issue but does not solve
it completely.

As dense groundtruth information is near impossible to
collect, evaluation and training relies on synthetic datasets
such as DynamicReplica. Generalization to the real world
can only be assessed qualitatively and might not fully reflect
the performance on artificial scenes.
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