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(Supplementary Material)

1. Overview
In Section 2, we provide more details about the notations

used in the main paper. We describe the detailed training
algorithms for image classification and semantic segmen-
tation in Section 3. We evaluate the impact of mislead-
ing/noisy neighbors on a clustering-based source-free do-
main adaptation (SFDA) method in Section 4. Section 5 dis-
cusses more on memory overhead. In Section 6, we present
more training details. We conduct a qualitative evaluation
of semantic segmentation results in Section 7. We provide
comparisons with more baselines in Section 8.

2. Notation

Notation Table: As shown in Table. 1, we provide sym-
bols and brief descriptions of the notations used in our work.
We have categorized the notations into 4 parts: a) Data, b)
Networks, c) Outputs/Thresholds, d) General.

3. Proposed Algorithm
We describe the training details for Image Classification

in Algorithm 1. For Semantic Segmentation, we summarize
the training details in Algorithm 2. Both of these algorithms
follow a similar training pipeline with minor changes. In
selective pseudo-labeling, we have used Difference of Con-
fidence (DoC) which was not clearly discussed in the main
paper. We have also used class balancing which was not
clearly discussed. We discuss them below.

Difference of Confidence (DoC): After separating the
input batch into DR and DU , we take difference of top-2
confidence scores of model prediction after sorting,
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Class Balancing, λk: We apply class balancing only for the
cross-entropy loss. The process of estimating λk is given in
Algorithm. 1.
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Ds Source dataset
Dt Unlabeled target dataset
DR Reliable Sample Set
DU Unreliable Sample Set
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f DNN Model
fθt Student Model
fθ̂t Teacher Model
H Contrastive output head
C Classifier
G CNN Backbone
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(xs, ys) Labeled source sample
Tl(·) lth augmentation
xt Unlabeled target sample

(xt, ŷt) Pseudo-labeled target sample
ĥt Model Output Probabilities
gu Uncertainty Measure
dj Difficulty Score of jth Batch
ri Reliability of ith sample
τc Confidence Threshold
τu Uncertainty Threshold
τd DoC Threshold
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K Number of Available Class
L Number of Augmentations
B Batch Size
T Total Number of Iterations
γ EMA Update Coefficient
µr Labelled Loss Coefficient
µc Contrastive Loss Coefficient
µe Entropy Loss Coefficient
α Labelled Loss Constant
β Contrastive Loss Constant
P Percentile Threshold for Conf. and Unc.
H Height of an image
W Width of an image
λk Loss Re-Weighting Coefficients
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Algorithm 1 TRAINING DETAILS FOR IMAGE CLASSIFICATION

1: Input: Trained Source Model fθs , and unlabeled target dataset Dt

▷ Let [·] denote the indexing operation, ·||· denote the append operation, |·| denote the cardinality, std(.) denote standard
deviation, and K be the number of classes.

2: Initialize: Student Model, fθt = fθs and Teacher Model, fθ̂t = fθs
3: for iter < MaxIter do:
4: Xt ← batch sampled from Dt

Step 1: Confidence and Uncertainty
5: Xb, Yb,W, V ← {}, {}, {}, {} ▷ Empty ordered lists
6: for x in Xt do:
7: ŵL, ĥL ← {}, {} ▷ Empty ordered list
8: for l in L do:
9: xl = Tl(x) ▷ Tl is the lth augmentation

10: h = fθ̂t(xl)
11: w ← maxk∈K h[k]
12: ŵL ← ŵL||w
13: ĥL ← ĥL||h ▷ Class Predictions
14: end for
15: h = 1

L

∑l=L
l=1 ĥL ▷ Augmented Average Prediction

16: yb = argmaxk∈K h[k] ▷ Predicted class
17: w = 1

L

∑l=L
l=1 ŵL ▷ Predicted class probabilities

18: v = std(ŵL) ▷ Prediction Uncertainty
19: q = DoC(ŵL) ▷ Difference of Top-2 Confidence Scores
20: W,V,Q, Yb, Xb ←W || w,U || v,Q || q, Yb || yb, Xb || x
21: end for

Step 2: Calculate Thresholds

22: τc ← 1
B

∑i=B
i=1 W ▷ Confidence threshold

23: τu ← 1
B

∑i=B
i=1 V ▷ Uncertainty threshold

Step 3: Selective Pseudo-labelling
24: DR,DU , QU ← {}, {}, {} ▷ Empty ordered lists
25: for yb, w, v, q, xb in Yb,W, V,Q,Xb do:
26: Following eqn.(4) of main paper, calculate rb

27: DR ← DR || (xb, yb); if rb = 1
28: DU ← DU || (xb, yb); if rb = 0
29: QU ← QU || q; if rb = 0
30: end for
31: τd ← 1

|QU |
∑i=|QU |

i=1 QU ▷ DoC threshold
32: for (xb, yb), q in DU , QU do:
33: DR ← DR || (xb, yb); if q > τd
34: end for

Step 4: Calculate Losses and Update the Model

35: Compute loss weights for LR
ce, λk = 1

nk
; ∀ k ∈ {1, . . . ,K} ▷ nk = Number of samples in DR with label k

36: Compute LR
ce,LP ,LC using DR,DU .

37: Update θt by minimizing Ltot (in eqn.(9) of main paper) using SGD optimizer
38: Update θ̂t using eqn.(3) of main paper
39: Update loss coefficients µr, µc

40: end for

41: Output: Updated θt



Algorithm 2 TRAINING DETAILS FOR SEMANTIC SEGMENTATION

1: Input: Trained Source Model fθs , and unlabeled target dataset Dt

▷ Let [·] denote the indexing operation, ·||· denote the append operation, |·| denote the cardinality, std(.) denote standard
deviation, and K be the number of classes.

2: Initialize: Student Model, fθt = fθs and Teacher Model, fθ̂t = fθs
3: for iter < MaxIter do:
4: Xt ← batch sampled from Dt

Step 1: Confidence and Uncertainty Calculations
5: Xb, Yb,W, V ← {}, {}, {}, {} ▷ Empty ordered lists
6: for x in Xt do:
7: ĥ = f(x)

8: yb ← argmaxk∈K ĥ[k] ▷ Class predictions
9: w ← maxk∈K ĥ[k] ▷ Predicted class probabilities

10: ŵL ← {} ▷ Empty ordered list
11: for l in L do:
12: wl ← maxk∈K f(xl)[k]
13: ŵL ← ŵL||wl

14: end for
15: v = std(ŵL) ▷ Prediction Uncertainty
16: W,V, Yb, Xb ←W || w, V || v, Yb || yb, Xb || x
17: end for

Step 2: Calculate Thresholds
18: τc, τu ← {}, {} ▷ List of class-wise confidence thresholds
19: for k in range(K) do:
20: pc ←W [Yb == k] ▷ Store all prediction probabilities of class k in pc
21: pv ← V [Yb == k] ▷ Store all prediction uncertainties of class k in pu
22: pc, pv ← sort(pc), sort(pv)
23: τc ← τc || pc[0.55|pc|] ▷ Set threshold at top most 45% confident predictions
24: τu ← τu || pv[0.55|pv|] ▷ Set threshold at top most 45% uncertain predictions
25: end for

Step 3: Selective Pseudo-Labelling

26: B̂t ← {} ▷ Empty ordered list
27: for yb, w, v, xb in Yb,W, V,Xb do:
28: for k in range(K) do:
29: yb[(w < τc[k])&(v > τu[k])&(yb == k)]← K + 1 ▷ Assign class-id, K + 1 representing ‘unknown’
30: end for
31: B̂t ← B̂t || (xb, yb)
32: end for

Step 4: Conditional Update
33: if mean(W ) > τthr then:
34: xt, yt ← B̂t
35: ĥ← f(xt)

36: Compute LR
ce ← CE(ĥ, yt)

37: Compute LE using eq.(12) of main paper
38: Update trainable parameters of θt by minimizing Ltot (in eq.(13)) using SGD optimizer
39: Update θ̂t using eqn.(3) of main paper
40: Update loss coefficient, µe

41: end if
42: end for

43: Output: Updated θt
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Figure 1. Quality evaluation of clustering-based neighbor pseudo-
labels on VisDA dataset. We use k (=3) similar neighbors of cen-
tral data instances and evaluate their quality. Here, true neigh-
bors have the same pseudo-label as the central data instance (xc)
ground truth label. In such a scenario, using cluster knowledge
for pseudo-label refinement may lead to severely noisy labels.
Broadly speaking, for label refinement of xc, if we take the neigh-
bor pseudo-labels it inevitably leads to the wrong label for xc.

Both DoC and λk are only used for image classification.

4. Noisy Neighbors in Cluster-based Methods
For analyzing the noisy neighbors in VisDA dataset, we

show the noisy neighbor scenario for cluster-based SFDA
method in Figure 1. We take SHOT [15] as the clustering-
based method and consider the pseudo-labels generated on
the first iteration. As there is a huge number of false neigh-
bors, the labels collected from these neighbors lead to noisy
labels. To identify if a neighbor is true or false, we com-
pare pseudo-labels of neighbors with the central instance’s
ground truth. If they are the same, we call them true neigh-
bors and vice versa. The true neighbor ratio is the percent-
age of true neighbors among all pseudo-labels.

5. Memory Overhead
The performance of SOTA SFDA methods (e.g., [42, 4])

relies heavily on using a large-size memory bank for label
refinement. [42] requires global memory banks or process-
ing the entire dataset before the adaptation. [4] requires
more than 4% of the dataset size as a memory queue to per-
form reasonably, with the best performance reported with
the entire dataset size (e.g. 55K for VisDA-C) as the queue.
These methods are likely to face significant scale-up issues
in online adaptation or in scenarios requiring adaptation to
millions of target samples. Our method eliminates the re-
quirement of memory banks completely making it scalable
while producing better performance.

Table 2. Effect of Batch Size on the Performance

Batch Size 64 128 256

VisDA-C 87.8 87.8 87.7
DomainNet 69.0 69.0 69.0

Table 3. List of Augmentations used for both Image Classifica-
tion and Semantic Segmentation (Sem. Seg.).

Task Augmentation
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RandomResizedCrop(224, scale=(0.2, 1.0))
ColorJitter(0.8, 0.8, 0.5, 0.2)

RandomGrayscale(p=0.2)
RandomRotation(degrees = [-2,2])

RandomPosterize(8, p=0.2)
RandomEqualize(p=0.2)
GaussianBlur([0.1, 2]),

RandomHorizontalFlip(),
ToTensor()

Normalize( mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])

Se
m

.S
eg

. ColorJitter(0.6, 0.6, 0.6, 0.15)
RandomGrayscale(p=0.5)

GaussianBlur([0.1, 2])
Normalize(mean = [104.00699, 116.66877, 122.67892])

We compare the performance of C-SFDA under differ-
ent batch sizes on DomainNet and VisDA-C (Table 2). We
find C-SFDA performs consistently/comparably with differ-
ent batch sizes. It is evident from the experiment that large
batch sizes are not required for the success of C-SFDA.

6. Training Details

6.1. Source Model Training

For the image classification task, we create source mod-
els for 4 different datasets. For Office-31 and Office-Home,
we follow [15] to train the model for 50 and 100 epochs
with a learning rate of 1e − 3 and weight decay of 1e − 3.
We use a learning rate of 1e − 2 for the bottleneck layer
(=256 dim) and task-specific FC layers. We consider the
bottleneck layer as the contrastive head (H). For VisDA
and DomainNet, we train the model for 10 and 60 epochs.

For GTA5 and SYNTHIA, we train on the source domain
for 35 epochs (GTA5) and 15 epochs (SYNTHIA), making
use of Gaussian blur and random flip augmentations. We
use a batch size of 16, and a learning rate of 1 × 10−4

for GTA5 and 2 × 10−5 for SYNTHIA, with weight de-
cay of 5 × 10−4. For source augmentations, we use snow
and frost augmentations with uniformly sampled severity
between 1 and 3 ( maximum severity possible in [9] is 5).
We follow [28] for Cityscapes training and apply random
cropping of size 512× 512 on the scale between 0.5 and 1.



This increases the training data size and produces a valida-
tion mIoU of 66.37 with DeepLabV2 architecture. We use
SGD optimizer with a momentum of 0.9, a learning rate of
2.5e − 4, and a weight decay of 5e − 4 and consider poly
learning rate policy with a power of 0.9. We use 2 NVIDIA
A40 GPUs for all the training.

6.2. Target Domain Training

In table 3, we list the augmentations used during the tar-
get domain training. For all augmentations, we use Py-
Torch default implementations. For the baseline models,
we follow their GitHub implementations 1,2. However, we
directly report most of the baseline results for Office-31,
Office-Home, and VisDA-C from SFDA-DE [2]. For Do-
mainNet, we follow AdaCon [1]. We only consider AdaCon
for online adaptation since it is the previous state-of-the-art
benchmark.

For Semantic Segmentations, we follow HCL [6] 3 im-
plementations. We also report the baseline method re-
sults from HCL [6]. For online adaptations, we follow
AUGCO [22] to report the baseline results. Note that, we
find ourselves in a bit of a conundrum in comparing against
the state-of-the-art works in SFDA semantic segmentation.
Since different works consider different training environ-
ments and a number of add-ons, it is hard to find suitable
techniques that match the adaptation scenarios we consider
here. Moreover, SFDA gained wide interest very recently
from researchers and continues to be a very challenging
task. Therefore, the number of baseline methods for seman-
tic segmentation is limited. In Cityscapes→ Dark Zurich
adaptation, we only report online adaptation results, as of-
fline methods are very rarely reported in prior works. To the
best of our ability, we could not find any SFDA technique for
this task where training has been done in an offline fashion.
When we run C-SFDA in an offline manner, we obtain a
mIoU of 35.1 after training for 10K iterations.

7. Qualitative Evaluation

In Figure 2, we show some qualitative results for
GTA5→Cityscapes adaptation. The first two columns show
several validation images with their ground truth segmenta-
tion maps. For the baseline comparison, we choose state-
of-the-art for semantic segmentation, HCL [6]. As evident
from Figure 2, Our proposed method performs significantly
better in detecting the edges and reducing noisy predictions
compared to HCL. Here, we choose a few crowded scenes
for comparison to show the effectiveness of C-SFDA in
challenging scenarios.

1https://github.com/DianCh/AdaContrast
2https://github.com/tim-learn/SHOT
3https : / / github . com / jxhuang0508 / HCL / tree /

225b791e08cfa976885f6b7386b0e53674a28035

8. More Comparison
For comparison, we consider a number of baselines that

work with or without source data. SFAN [30], STAR [17]
RWOT [31], SE [3] are among the source-dependent UDA
techniques. For source-free settings, we consider SFDA
[10], 3C-GAN [12], SHOT [15], A2Net [29], G-SFDA [32],
SFDA-DE [2], AdaCon [1]. For Segmentation, we con-
sider SOTA SFDA techniques such as UR [23], SFDA [16],
HCL [6]. For online semantic segmentation benchmarks,
we consider Test Time BN [20], TENT [27], AUGCO [22].
However, due to the page limit, we put more comparisons
with other relevant baselines here in Table 4-7.



Image Ground Truth HCL C-SFDA (Ours)

Figure 2. Qualitative Evaluation of GTA5→Cityscapes source-free domain adaptation for semantic segmentation. Compared to the state-
of-the-art method HCL [6], we observe that the proposed C-SFDA performs better at edge classification. We also encouragingly find our
method performing significantly better at distinguishing between building and sky (whereas the baseline HCL struggles due to the similar
colors and positions of the sky and building class pixels). Comparing our results with the ground truth, we find the proposed C-SFDA to
perform satisfactorily in most cases.

Table 4. Classification performance (%) under UDA and SFDA settings on Office-Home dataset (ResNet50 backbone). We report Top-1 accuracy on 12
domain shifts (→) and take the average (Avg.) over them. Our method achieves SOTA performance on 8 of these shifts.

Method SF Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

GSDA [5] × 61.3 76.1 79.4 65.4 73.3 74.3 65.0 53.2 80.0 72.2 60.6 83.1 70.3
RSDA [4] × 53.2 77.7 81.3 66.4 74.0 76.5 67.9 53.0 82.0 75.8 57.8 85.4 70.9
TSA [14] × 57.6 75.8 80.7 64.3 76.3 75.1 66.7 55.7 81.2 75.7 61.9 83.8 71.2

SRDC [24] × 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3
FixBi [19] × 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7

SFDA [10] ✓ 48.4 73.4 76.9 64.3 69.8 71.7 62.7 45.3 76.6 69.8 50.5 79.0 65.7
G-SFDA [32] ✓ 57.9 78.6 81.0 66.7 77.2 77.2 65.6 56.0 82.2 72.0 57.8 83.4 71.3

SHOT [15] ✓ 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
A2Net [29] ✓ 58.4 79.0 82.4 67.5 79.3 78.9 68.0 56.2 82.9 74.1 60.5 85.0 72.8

SFDA-DE [2] ✓ 59.7 79.5 82.4 69.7 78.6 79.2 66.1 57.2 82.6 73.9 60.8 85.5 72.9
C-SFDA (Ours) ✓ 60.3 80.2 82.9 69.3 80.1 78.8 67.3 58.1 83.4 73.6 61.3 86.3 73.5
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