C-SFDA: A Curriculum Learning Aided Self-Training Framework for Efficient
Source Free Domain Adaptation

(Supplementary Material)

1. Overview

In Section 2, we provide more details about the notations
used in the main paper. We describe the detailed training
algorithms for image classification and semantic segmen-
tation in Section 3. We evaluate the impact of mislead-
ing/noisy neighbors on a clustering-based source-free do-
main adaptation (SFDA) method in Section 4. Section 5 dis-
cusses more on memory overhead. In Section 6, we present
more training details. We conduct a qualitative evaluation
of semantic segmentation results in Section 7. We provide
comparisons with more baselines in Section 8.

2. Notation

Notation Table: As shown in Table. 1, we provide sym-
bols and brief descriptions of the notations used in our work.
We have categorized the notations into 4 parts: a) Data, b)
Networks, c¢) Outputs/Thresholds, d) General.

3. Proposed Algorithm

We describe the training details for Image Classification
in Algorithm 1. For Semantic Segmentation, we summarize
the training details in Algorithm 2. Both of these algorithms
follow a similar training pipeline with minor changes. In
selective pseudo-labeling, we have used Difference of Con-
fidence (DoC) which was not clearly discussed in the main
paper. We have also used class balancing which was not
clearly discussed. We discuss them below.

Difference of Confidence (DoC): After separating the
input batch into Dr and Dy, we take difference of top-2
confidence scores of model prediction after sorting,

A =2 =

he = Z;hé = Z;f@;(i‘i)) (1)
hy = Sort{ﬁt} 2)
q= DoC(ﬁt) = }Alt[o] - }Alt[l] €)]

Class Balancing, )\;: We apply class balancing only for the
cross-entropy loss. The process of estimating Ay, is given in
Algorithm. 1.

Table 1. Notation Table

Entropy Loss Coefficient

Labelled Loss Constant

Contrastive Loss Constant

Percentile Threshold for Conf. and Unc.
Height of an image

Symbol  Description
Dy Source dataset
% Dy Unlabeled target dataset
) Dgr Reliable Sample Set
Dy Unreliable Sample Set
f DNN Model
Z fo, Student Model
S s, Teacher Model
g H Contrastive output head
C Classifier
G CNN Backbone
(zs,ys)  Labeled source sample
3 Ti(*) I™ augmentation
2 2y Unlabeled target sample
8  (x4,9:) Pseudo-labeled target sample
= hy Model Output Probabilities
g Gu Uncertainty Measure
& d; Difficulty Score of ;" Batch
) r? Reliability of i*" sample
Te Confidence Threshold
Tu Uncertainty Threshold
Td DoC Threshold
K Number of Available Class
L Number of Augmentations
B Batch Size
T Total Number of Iterations
_ ¥ EMA Update Coefficient
§ Ly Labelled Loss Coefficient
g e Contrastive Loss Coefficient
He
Q@
g
P
H
w

Width of an image
Loss Re-Weighting Coefficients




Algorithm 1 TRAINING DETAILS FOR IMAGE CLASSIFICATION
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Input: Trained Source Model fy,, and unlabeled target dataset D;

> Let [-] denote the indexing operation, -||- denote the append operation, |- | denote the cardinality, std(.) denote standard
deviation, and K be the number of classes.

Initialize: Student Model, fy, = fy. and Teacher Model, féf, = fo.
for iter < MaxIter do:
X; < batch sampled from Dy

Step 1: Confidence and Uncertainty

X, Y, W,V {1, {1 {} {} > Empty ordered lists
for z in X; do:
wr, hy + {},{} > Empty ordered list
for [ in L do:
x; = Ti(z) > 77 is the I*" augmentation
h = f, (z1)

w — maxgex hlk]
’LZJL < 1ZJL||’LU

hr < hrllh > Class Predictions
end for A
h = % EIL hr > Augmented Average Prediction
Yp = arg maxyc o hlk] > Predicted class
w=1 Zﬁif wy, > Predicted class probabilities
v = std(dr) > Prediction Uncertainty
q = DoC(wy) > Difference of Top-2 Confidence Scores
M/a‘/aQ,anb ~ W H 'UJ,U H U?Q H qub || yvab H x

end for

Step 2: Calculate Thresholds

o L Zi? W > Confidence threshold
Tu g YTV > Uncertainty threshold

Step 3: Selective Pseudo-labelling

Dg,Dy,Qu « {},{},{} > Empty ordered lists
for yp, w, v, q,zp in Y, W, V. Q, X}, do:

Following eqn.(4) of main paper, calculate r°

DR — DR H (xb,yb);ifrb =1

]DU — ]D)U || (l’b,yb); ifTb =0

Qu + Qu || gifr* =0
end for

T4 \Qlu\ ZZ\IQU\ Qu > DoC threshold

for (xbvyb)7q in ID)U,QU do:
Dg < Dg || (zy,yp):if ¢ > 74
end for

Step 4: Calculate Losses and Update the Model

Compute loss weights for L2, \j, = n%.; Vke{l,...,K} > ng, = Number of samples in D with label k
Compute L, Lp, Lc using Dg, Dy
Update 6; by minimizing L, (in eqn.(9) of main paper) using SGD optimizer
Update 0, using eqn.(3) of main paper
Update loss coefficients i, fic
end for

Output: Updated 0,




Algorithm 2 TRAINING DETAILS FOR SEMANTIC SEGMENTATION
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Input: Trained Source Model fy,, and unlabeled target dataset D;
> Let [-] denote the indexing operation, -||- denote the append operation, |- | denote the cardinality, std(.) denote standard

deviation, and K be the number of classes.

Initialize: Student Model, fy, = fy. and Teacher Model, féf, = fo.
for iter < MaxIter do:
X; < batch sampled from Dy

Step 1: Confidence and Uncertainty Calculations

X, Yo, W,V {},{}L{}, {3 > Empty ordered lists
for x in X; do:
h=f(x)
Y, < arg max;,c g h[k] > Class predictions
w < maxpe i hlk] > Predicted class probabilities
W, + {} > Empty ordered list
for [ in L do:

wy < maxgeg f(x1)[k]
'UAJL < lz)Lle

end for
v = std(wdr) > Prediction Uncertainty
W V.Y, Xp = W[ w, V[0, Yy [| 4, Xy || @
end for
Step 2: Calculate Thresholds
TesTu < {}, {} > List of class-wise confidence thresholds
for k in range(K) do:
pe — WY, == k] > Store all prediction probabilities of class & in p,
py < V[Y, == K] > Store all prediction uncertainties of class k in p,,
Pe; Pu = sort(pe), sort(py)
Te < Te || Pe[0.55|pc|] > Set threshold at top most 45% confident predictions
Tu < Tu || Pu[0.55|py]] > Set threshold at top most 45% uncertain predictions
end for

Step 3: Selective Pseudo-Labelling

B, +— {} > Empty ordered list
for yp, w, v, xp in Yy, W, V, X}, do:
for £ in range(K) do:

yol(w < 7e[k])&(v > T, [k])&(yp == k)] «+ K + 1 > Assign class-id, K + 1 representing ‘unknown’
end for
B < By || (z6,yp)
end for

Step 4: Conditional Update

if mean (W) > Ty then:
Ty, Yyt < By
h < f(x)
Compute LE < CE(h, yy)
Compute L using eq.(12) of main paper
Update trainable parameters of 6; by minimizing L, (in eq.(13)) using SGD optimizer
Update 0, using eqn.(3) of main paper
Update loss coefficient, u,

end if

end for

Output: Updated 6,
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Figure 1. Quality evaluation of clustering-based neighbor pseudo-
labels on VisDA dataset. We use k (=3) similar neighbors of cen-
tral data instances and evaluate their quality. Here, true neigh-
bors have the same pseudo-label as the central data instance (z.)
ground truth label. In such a scenario, using cluster knowledge
for pseudo-label refinement may lead to severely noisy labels.
Broadly speaking, for label refinement of z.., if we take the neigh-
bor pseudo-labels it inevitably leads to the wrong label for z..

Both DoC' and )\, are only used for image classification.

4. Noisy Neighbors in Cluster-based Methods

For analyzing the noisy neighbors in VisDA dataset, we
show the noisy neighbor scenario for cluster-based SFDA
method in Figure 1. We take SHOT [15] as the clustering-
based method and consider the pseudo-labels generated on
the first iteration. As there is a huge number of false neigh-
bors, the labels collected from these neighbors lead to noisy
labels. To identify if a neighbor is true or false, we com-
pare pseudo-labels of neighbors with the central instance’s
ground truth. If they are the same, we call them true neigh-
bors and vice versa. The true neighbor ratio is the percent-
age of true neighbors among all pseudo-labels.

5. Memory Overhead

The performance of SOTA SFDA methods (e.g., [42, 4])
relies heavily on using a large-size memory bank for label
refinement. [42] requires global memory banks or process-
ing the entire dataset before the adaptation. [4] requires
more than 4% of the dataset size as a memory queue to per-
form reasonably, with the best performance reported with
the entire dataset size (e.g. 55K for VisDA-C) as the queue.
These methods are likely to face significant scale-up issues
in online adaptation or in scenarios requiring adaptation to
millions of target samples. Our method eliminates the re-
quirement of memory banks completely making it scalable
while producing better performance.

Table 2. Effect of Batch Size on the Performance

Batch Size | 64 | 128 | 256
VisDA-C | 87.8 | 87.8 | 87.7

DomainNet | 69.0 | 69.0 | 69.0

Table 3. List of Augmentations used for both Image Classifica-
tion and Semantic Segmentation (Sem. Seg.).

Task | Augmentation

RandomResizedCrop(224, scale=(0.2, 1.0))
ColorlJitter(0.8, 0.8, 0.5, 0.2)
RandomGrayscale(p=0.2)
RandomRotation(degrees = [-2,2])
RandomPosterize(8, p=0.2)
RandomEqualize(p=0.2)
GaussianBlur([0.1, 2]),
RandomHorizontalFlip(),
ToTensor()

Normalize( mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225])

ColorlJitter(0.6, 0.6, 0.6, 0.15)
RandomGrayscale(p=0.5)
GaussianBlur([0.1, 2])
Normalize(mean = [104.00699, 116.66877, 122.67892])

Image Classification

Sem. Seg.

We compare the performance of C-SFDA under differ-
ent batch sizes on DomainNet and VisDA-C (Table 2). We
find C-SFDA performs consistently/comparably with differ-
ent batch sizes. It is evident from the experiment that large
batch sizes are not required for the success of C-SFDA.

6. Training Details
6.1. Source Model Training

For the image classification task, we create source mod-
els for 4 different datasets. For Office-31 and Office-Home,
we follow [15] to train the model for 50 and 100 epochs
with a learning rate of 1le — 3 and weight decay of le — 3.
We use a learning rate of le — 2 for the bottleneck layer
(=256 dim) and task-specific FC layers. We consider the
bottleneck layer as the contrastive head (H). For VisDA
and DomainNet, we train the model for 10 and 60 epochs.

For GTAS and SYNTHIA, we train on the source domain
for 35 epochs (GTAS) and 15 epochs (SYNTHIA), making
use of Gaussian blur and random flip augmentations. We
use a batch size of 16, and a learning rate of 1 x 10~4
for GTAS and 2 x 10~° for SYNTHIA, with weight de-
cay of 5 x 10~*. For source augmentations, we use snow
and frost augmentations with uniformly sampled severity
between 1 and 3 ( maximum severity possible in [9] is 5).
We follow [28] for Cityscapes training and apply random
cropping of size 512 x 512 on the scale between 0.5 and 1.



This increases the training data size and produces a valida-
tion mloU of 66.37 with DeepLabV?2 architecture. We use
SGD optimizer with a momentum of 0.9, a learning rate of
2.5e — 4, and a weight decay of 5e — 4 and consider poly
learning rate policy with a power of 0.9. We use 2 NVIDIA
A40 GPUs for all the training.

6.2. Target Domain Training

In table 3, we list the augmentations used during the tar-
get domain training. For all augmentations, we use Py-
Torch default implementations. For the baseline models,
we follow their GitHub implementations '»>. However, we
directly report most of the baseline results for Office-31,
Office-Home, and VisDA-C from SFDA-DE [2]. For Do-
mainNet, we follow AdaCon [1]. We only consider AdaCon
for online adaptation since it is the previous state-of-the-art
benchmark.

For Semantic Segmentations, we follow HCL [6] * im-
plementations. We also report the baseline method re-
sults from HCL [6]. For online adaptations, we follow
AUGCO [22] to report the baseline results. Note that, we
find ourselves in a bit of a conundrum in comparing against
the state-of-the-art works in SFDA semantic segmentation.
Since different works consider different training environ-
ments and a number of add-ons, it is hard to find suitable
techniques that match the adaptation scenarios we consider
here. Moreover, SFDA gained wide interest very recently
from researchers and continues to be a very challenging
task. Therefore, the number of baseline methods for seman-
tic segmentation is limited. In Cityscapes— Dark Zurich
adaptation, we only report online adaptation results, as of-
fline methods are very rarely reported in prior works. To the
best of our ability, we could not find any SFDA technique for
this task where training has been done in an offline fashion.
When we run C-SFDA in an offline manner, we obtain a
mloU of 35.1 after training for 10K iterations.

7. Qualitative Evaluation

In Figure 2, we show some qualitative results for
GTAS5—Cityscapes adaptation. The first two columns show
several validation images with their ground truth segmenta-
tion maps. For the baseline comparison, we choose state-
of-the-art for semantic segmentation, HCL [6]. As evident
from Figure 2, Our proposed method performs significantly
better in detecting the edges and reducing noisy predictions
compared to HCL. Here, we choose a few crowded scenes
for comparison to show the effectiveness of C-SFDA in
challenging scenarios.

Ihttps://github.com/DianCh/AdaContrast

Zhttps://github.com/tim-learn/SHOT

3https : / / github . com / jxhuang0508 / HCL / tree /
225p791e08cfa976885£f6b7386b0e53674a28035

8. More Comparison

For comparison, we consider a number of baselines that
work with or without source data. SFAN [30], STAR [17]
RWOT [31], SE [3] are among the source-dependent UDA
techniques. For source-free settings, we consider SFDA
[10], 3C-GAN [12], SHOT [15], A2Net [29], G-SFDA [32],
SFDA-DE [2], AdaCon [!]. For Segmentation, we con-
sider SOTA SFDA techniques such as UR [23], SFDA [16],
HCL [6]. For online semantic segmentation benchmarks,
we consider Test Time BN [20], TENT [27], AUGCO [22].
However, due to the page limit, we put more comparisons
with other relevant baselines here in Table 4-7.



Ground Truth HCL  C-SFDA (Ours)

Figure 2. Qualitative Evaluation of GTA5—Cityscapes source-free domain adaptation for semantic segmentation. Compared to the state-
of-the-art method HCL [6], we observe that the proposed C-SFDA performs better at edge classification. We also encouragingly find our
method performing significantly better at distinguishing between building and sky (whereas the baseline HCL struggles due to the similar
colors and positions of the sky and building class pixels). Comparing our results with the ground truth, we find the proposed C-SFDA to
perform satisfactorily in most cases.

Table 4. Classification performance (%) under UDA and SFDA settings on Office-Home dataset (ResNet50 backbone). We report Top-1 accuracy on 12
domain shifts (—) and take the average (Avg.) over them. Our method achieves SOTA performance on 8 of these shifts.

Method | SF | Ar—Cl Ar—Pr Ar—Rw Cl—Ar Cl—»Pr Cl-Rw Pr—Ar Pr—Cl Pr—Rw Rw—Ar Rw—Cl Rw—Pr | Avg.
GSDA [5] X 61.3 76.1 79.4 65.4 73.3 74.3 65.0 53.2 80.0 72.2 60.6 83.1 70.3
RSDA [4] X 532 71.7 81.3 66.4 74.0 76.5 67.9 53.0 82.0 75.8 57.8 85.4 70.9
TSA[14] X 57.6 75.8 80.7 64.3 76.3 75.1 66.7 55.7 81.2 75.7 61.9 83.8 712
SRDC [24] X 523 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 713
FixBi [19] X 58.1 71.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7
SFDA [10] v 484 73.4 76.9 64.3 69.8 71.7 62.7 453 76.6 69.8 50.5 79.0 65.7

G-SFDA [32] v 579 78.6 81.0 66.7 712 772 65.6 56.0 82.2 72.0 57.8 83.4 71.3

SHOT [15] v 57.1 78.1 81.5 68.0 782 78.1 67.4 549 82.2 733 58.8 84.3 71.8

A%Net [29] v 58.4 79.0 82.4 67.5 79.3 78.9 68.0 56.2 82.9 74.1 60.5 85.0 72.8

SFDA-DE (2] v 59.7 79.5 82.4 69.7 78.6 79.2 66.1 572 82.6 73.9 60.8 85.5 729

C-SFDA (Ours) | v 60.3 80.2 82.9 69.3 80.1 78.8 67.3 58.1 834 73.6 61.3 86.3 735
References of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, pages 295-305, 2022. 5, 7

[1] Dian Chen, Dequan Wang, Trevor Darrell, and Sayna [2] Ning Ding, Yixing Xu, Yehui Tang, Chao Xu, Yunhe Wang,
Ebrahimi. Contrastive test-time adaptation. In Proceedings and Dacheng Tao. Source-free domain adaptation via dis-



Table 5. Source-free (SF) domain adaptation performance on VisDA dataset (ResNet-101 backbone) shown by per-class accuracy (%) and their average
(Avg.). Our method improves the average accuracy by 1% compared to the previous SOTA, Adacon [1]. C-SFDA also achieves a significant performance

gain

(3.5% in Avg.) for online test-time domain adaptation settings.

Method ‘ SF ‘ plane  bike  bus car  horse knife mcycle person plant sktbrd train  truck ‘ Avg.
SFAN [30] X 93.6 61.3 841 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 244 76.1
SWD [11] X 90.8 825 81.7 705 91.7 69.5 86.3 71.5 87.4 63.6 85.6 29.2 76.4

MCC [8] X 88.7 803 805 715 90.1 93.2 85.0 71.6 89.4 73.8 850 369 | 788
STAR [17] X 950 840 846 730 916 918 85.9 78.4 94.4 84.7 87.0 422 | 827
RWOT [31] X 95.1 80.3 83.7 90.0 92.4 68.0 92.5 82.2 87.9 78.4 904 682 84.0

SE [3] X 959 874 852 586 962 957 90.6 80.0 94.8 90.8 884 479 | 843
Source only - 572 11.1 424 669 55.0 4.4 81.1 27.3 57.9 294 86.7 5.8 43.8
3C-GAN [12] v 94.8 734 688 748 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6
SHOT [15] v 943 885 801 573 931 94.9 80.7 80.3 91.5 89.1 86.3 582 | 829
A2Net [29] v 940 878 856 668 937 951 85.8 81.2 91.6 88.2 86.5 56.0 | 843
G-SFDA [32] v 9.1 883 855 741 97.1 95.4 89.5 79.4 95.4 92.9 89.1 426 | 854
SFDA-DE [2] v 95.3 91.2 775 721 95.7 97.8 85.5 86.1 95.5 93.0 86.3 61.6 86.5
AdaCon [ 1] v 97.0 847 840 713 96.7 93.8 91.9 84.8 94.3 93.1 94.1 497 86.8
C-SFDA (Ours) v 97.6 888 861 722 972 944 92.1 84.7 93.0 90.7 93.1 635 | 87.8
AdaCon [1] (Online) v 95.0 68.0 827 69.6 94.3 80.8 90.3 79.6 90.6 69.7 87.6 36.0 78.7
C-SFDA (Online) v ‘ 959 756 884 681 954  86.1 94.5 82.0 89.2 81.4 873 438 | 822

Table 6. Performance evaluation on GTA5— Cityscapes (DeepLabV?2 with ResNet101) where we report mean IoU (mlIoU) over 19 categories on
Cityscapes validations set. Our method achieves the best mIoU in SFDA and online test-time adaptation.

Method ‘SF ‘ Road SW  Build Wall Fence Pole TL TS Veg. Terrain Sky PR Rider Car Truck Bus Train Motor Bike ‘ mloU
CBST [34] x | 918 535 805 327 210 340 289 204 839 342 809 531 240 827 303 359 160 259 428 | 459
AdvEnt [26] x | 89.4 331 810 266 268 272 335 247 839 367 788 587 305 848 385 445 17 316 324 | 455
IDA [21] x | 906 371 826 301 1901 295 324 206 857 405 797 587 3L1 863 315 483 00 302 358 | 463
CRST [35] x | 910 554 800 337 214 373 329 245 850 341 808 577 246 841 278 301 269 260 423 | 47.1
CrCDA [7] x | 924 553 823 312 2901 325 332 356 835 348 842 589 322 847 406 461 21 311 327 | 486
IAST [18] x | 938 578 851 395 267 262 431 347 849 329 880 626 290 873 392 496 232 347 396 | 5L
ProDA [33] x | 915 524 829 420 357 400 444 433 870 438 795 665 314 867 4Ll 525 00 454 538 | 537
CPSL [13] x | 917 529 836 430 323 437 513 428 854 376 8Ll 695 300 881 441 599 249 472 484 | 557
Source Only -] 697 205 733 221 123 235 318 179 787 187 682 539 265 706 322 45 81 268 315 | 364
UR [23] v | 923 552 816 308 188 371 177 121 842 359 838 577 241 817 275 443 69 241 404 | 451
SFDA [16] v | 917 527 822 287 203 365 306 236 817 356 848 595 226 834 296 324 118 238 396 | 458
HCL [6] v | 920 550 804 335 246 371 351 288 830 376 823 594 276 836 323 366 141 287 430 | 481
C-SFDA (ours) v | 904 422 832 340 293 345 361 384 840 430 756 602 284 852 331 464 35 282 448 | 483
TENT [27] (Online) | v | 873 390 798 243 196 212 251 166 838 347 777 579 178 850 249 208 20 166 45 | 389
AUGCO [22] (Online) | v | 903 412 818 265 214 345 404. 333 836 346 797 614 193 847 303 395 73 276 346 | 459
C-SFDA (Online) v | 847 378 824 297 280 318 348 293 837 438 769 588 284 849 335 441 05 245 391 | 463
tribution estimation. In Proceedings of the IEEE/CVF Con- semantic segmentation. In European conference on com-
ference on Computer Vision and Pattern Recognition, pages puter vision, pages 705-722. Springer, 2020. 7, 8
7212-7222,2022. 5, 6,7 [8] YingJin, Ximei Wang, Mingsheng Long, and Jianmin Wang.
[3] Geoffrey French, Michal Mackiewicz, and Mark Fisher. Minimum class confusion for versatile domain adaptation. In
Self-ensembling for visual domain adaptation. In Inferna- European Conference on Computer Vision, pages 464-4380.
tional Conference on Learning Representations, number 6, Springer, 2020. 7
2018. 5,7 [9] Alexander B. Jung, Kentaro Wada, Jon Crall, Satoshi
[4] Xiang Gu, Jian Sun, and Zongben Xu. Spherical space do- zanalia, JBake Gra"g‘% C{l}rlstophAl(?em(izs,f S;rhthak 12@'
main adaptation with robust pseudo-label loss. In Proceed- J'a‘l: ](;y aner]ze;' a orv Tlcsel_’ Sam ;}:’ 4 el?g Kull,
ings of the IEEE/CVF Conference on Computer Vision and r ;i)f _(;;ovelc;, Crlst;(anl a finlzm’ - eénenF yden 1(\)/’[_ hli
Pattern Recognition (CVPR), June 2020. 6 tan Feuter, ben ook, Ismael bernandez, rrangols-iviiche
51 Langing Hu. Meina Kan. Shi Sh d Xilin Ch De Rainville, Chi-Hung Weng, Abner Ayala-Acevedo,
5] Uanqmg . u’d dema. ag, ‘fo’“a“g_ b l?n’ anh_ 1lm d_en. Raphael Meudec, Matias Laporte, et al. imgaug. https:
nsupervised domain adaptation with hierarchical gradien / /github . con/aledu/ ingaug, 2020. Online; ac-
sync romgaﬂon. nvr{)cee n;g; of t eR V onfer- cessed 01-Feb-2020. 4
ence on Computer Vision and Pattern Recognition, pages .
P J pag [10] Youngeun Kim, Donghyeon Cho, Kyeongtak Han,
4043-4052, 2020. 6 . - .
Priyadarshini Panda, and Sungeun Hong. Domain
(6] Jiaxing Huang, Dayan Guan, Aoran Xiao, and Shijian Lu. adaptation without source data. [EEE Transactions on
Model adaptation: Historical contrastive learning for unsu- Artificial Intelligence, 2021. 5, 6
Perwsed domain adgptatlon w1thout source data. Advances [11] Chen-Yu Lee, Tanmay Batra, Mohammad Haris Baig, and
in Neural Information Processing Systems, 34:3635-3649, Daniel Ulbricht. Sliced wasserstein discrepancy for unsuper-
2021.5,6,7,8 vised domain adaptation. In Proceedings of the IEEE/CVF
[7] Jiaxing Huang, Shijian Lu, Dayan Guan, and Xiaobing Conference on Computer Vision and Pattern Recognition,

Zhang. Contextual-relation consistent domain adaptation for

pages 10285-10295, 2019. 7



Table 7. Performance evaluation on SYNTHIA — Cityscapes. We report mean IoU (mIoU) over 16 common categories between SYNTHIA and Cityscapes.

mloU" are calculated over 13 categories. Our method achieves SOTA performance in both mIoU and mIoU™.

Method | SF | Road SW Build Wall" Fence® Pole” TL TS Veg. Sky PR Rider Car Bus Motor Bike | mloU | mloU"
AdaptSeg [25] x | 843 427 715 - - - 47 70 779 825 543 210 723 322 189 323 - 46.7
AdvEnt [20] x | 8.6 422 797 8.7 0.4 259 54 81 804 841 579 238 733 364 142 33.0 | 412 48.0

IDA [21] x | 843 377 795 53 04 249 92 84 800 841 572 230 780 381 203 365 | 417 | 489

CRST [35] x | 677 322 739 107 1.6 374 222 312 808 805 60.8 29.1 828 250 194 453 | 438 | 50.1
CrCDA [7] x | 8.2 449 1795 8.3 0.7 278 94 118 786 865 572 261 768 399 215 321 | 429 50.0
ProDA [33] x | 87.1 440 832 269 0.7 42.0 458 342 867 813 684 2211 877 500 314 386 | 519 58.5
CPSL [13] x | 873 444 838 250 04 429 475 324 865 833 69.6 291 894 521 426 541 | 544 | 617
Source Only - 452 19.6 720 6.7 0.1 243 55 78 744 819 573 173 390 195 7.0 6.2 31.3 36.2
UR [23] v | 593 246 770 140 1.8 315 183 320 83.1 804 463 178 767 170 185 346 | 39.6 | 450
SFDA [16] v | 678 319 771 83 L1 359 212 267 798 794 588 273 804 253 195 374 | 424 | 487
HCL [6] v | 809 349 767 6.6 0.2 36.1 20.1 282 79.1 83.1 556 256 788 327 241 327 | 435 50.2
C-SFDA (Ours) v | 87.0 390 795 12.2 1.8 322 204 243 795 822 515 245 787 315 213 479 | 44.6 51.3
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