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Abstract

This document provides additional material that is sup-
plemental to our main paper. Section 1 describes the as-
sociated supplemental video. Section 2 provides further in-
formation on the technical approach as a description of the
datasets, implementation details, and connection between
the label propagation and spectral clustering. Section 3
provides additional empirical results in terms of ablations
on the number of queries and the decoder learnable spa-
tiotemporal embedding vs. fixed sinusoidal spatiotemporal
embedding as well as visualizations to shed further light on
the contributions of the queries and label propagation. Sec-
tion 4 details the used assets and accompanying licenses.
Finally, Section 5 describes the societal impact of this re-
search.

1. Supplemental video

We include an accompanying supplemental video as part
of the supplemental materials. In this video we show qual-
itative segmentation results of our approach. For AVOS we
provide two examples on DAVIS’16 [10] and two examples
on MoCA [4]. For actor/action segmentation we provide
four examples on A2D [19]. The video is in MP4 format
and approximately six minutes long. The codec used for
the realization of the provided video is H.264 (x264). The
video can be viewed at rkyuca.github.io/medvt

2. Technical details

This section unfolds in four subsections. First, we pro-
vide details for our pixel decoding scheme. Second, we es-
tablish the connection between label propagation and spec-
tral clustering. Third, we describe the datasets used in our
empirical evaluation. Fourth, we provide additional imple-
mentation and training details.

2.1. Pixel decoding details

In this subsection, we provide additional details on the
operation of the Feature Pyramid Network (FPN) [5] used
in our pixel decoding (main paper, Sec. 3.3). With our mul-
tiscale encoder having captured the recurring object and en-
sured temporally consistent features, the role of the FPN
is to propagate high level semantics to the finest resolu-
tion feature maps. In the FPN, we combine the two coars-
est resolution feature outputs from our multiscale encoder
along with the two finest resolution outputs directly from
the backbone. We only use the two coarsest resolutions in
the multiscale encoder for memory efficiency reasons. The
FPN operates on these four levels of resolution in a coarse-
to-fine scheme by (i) performing a 1 × 1 convolutional op-
eration that maps the features to channel dimension 384,
(ii) performing ReLU and bilinear upsampling to match the
next scale and (iii) pointwise adding the upsampled feature
map to the next scale. The last three (coarsest) levels from
the feature pyramid network output are used as input to our
multiscale query learning mechanism, main paper, Sec. 3.3.
Further details on how FPNs operate are available in the
original paper [5].

2.2. Label propagation and spectral clustering

We begin with formal definitions from spectral cluster-
ing on which label propagation relies [15]. We include these
here to establish the theoretical connection and help provide
insights on how our label propagator operates. A similarity
graph is defined in terms of a set of vertices, vi and edges
with weights, wij , on edges connecting vertices, vi, and,
vj . The weight, wij , denotes the similarity between the two
vertices; the similarity matrix, W, is comprised of the wij .

For a vertex, vi, we define the degree, di =
n∑
j

wij . The de-

gree matrix, D, is defined as a diagonal matrix with degree
d1, ..., dn, where each di sums the degree of connectivity
for each vertex and its neighbours.

The normalized graph Laplacian matrix, which is a



corner stone of the label propagation [22], represents the
smoothness of the graph function. It has two main forms,
the symmetric and random walk, where the former was used
in label propagation prior to deep learning [22]. Here, we
work with the random walk graph Laplacian, as it aligns
with transformer operations; it is defined as Lrw = I −
D−1W. Since the identity matrix is constant, we can see
the main component of the normalized graph Laplacian,
D−1W, corresponds to the calculated per head, h, atten-
tion map in our label propagation scheme, equation (8a) in
the main paper, Softmax

(
1√
δ
QWq

h(KW
k
h)

⊤ +M
)

. Here,
we use δ for feature dimension to avoid confusion with d in
defining the degree matrix, D.

The part of the attention operation that computes the rel-
evance between the query and key tokens with masking that
controls predefined neighbourhood, 1√

δ
QWq

h(KW
k
h)

⊤, cor-
responds to building the similarity matrix, W. We compute
the similarity between two nodes in the similarity matrix,
W, in terms of a scaled inner product, as standard in mul-
tihead attention. The masking operation, M, serves to fur-
ther enforce cliques within the similarity graph based on the
structure of the data (e.g. the temporal structure). On the
other hand, the normalization of the graph Laplacian using
the degree matrix, D−1, corresponds to the Softmax nor-
malization in the attention operation. Overall, given that the
attention map in equation (8a) when applied to our values,
V, controls the label propagation, we see that it acts analo-
gously to the way the graph Laplacian enforces smoothness.

2.3. Datasets

In this section, we provide additional details on the three
standard Automatic Video Object Segmentation (AVOS)
dataset used to evaluate our model. These are DAVIS’16
[10], YouTube-Objects [11] and MoCA (Moving Camou-
flaged Animals) [4]. We also provide additional details on
the actor/action segmentation dataset that was used in our
evaluation, A2D [19].

DAVIS’16 consists of 50 video sequences with a total
3455 annotated frames of 480p and 720p with high quality
dense pixel-level annotations (30 videos for training and 20
for testing). For quantitative evaluation on this dataset, we
follow the standard evaluation protocol provided with the
dataset [10]. We report results as mean Intersection over
Union (mIoU), J , and boundary accuracy, F , using 480p
resolution frames.

YouTube-Objects contains 126 videos with more than
20,000 frames at resolution 720p. Following its protocol,
we use mIoU to measure performance. We follow stan-
dard protocol by training on DAVIS’16 and evaluating on
all videos in YouTube-Objects dataset and evaluate per cat-
egory intersection over union and report the average.

MoCA consists of videos of moving camouflaged ani-
mals with more than 140 clips of resolution 720p across

a diverse range of animals. This is the most challenging
motion segmentation dataset currently available, as in the
absence of motion the camouflaged animals are almost in-
distinguishable from the background by appearance alone
(i.e. colour and texture). The groundtruth is provided as
bounding boxes, and we follow previous work [21] in re-
moving videos that contain no predominant target locomo-
tion, to evaluate on a subset of 88 videos constituting ap-
proximately 2803 frames. We evaluate using mIoU with
the largest bounding box on the predicted segmentation and
also report the success rate with varying IoU thresholds,
τ ∈ {0.5, ..., 0.9}. Following standard practice [23], we
trained our model on DAVIS’16 and YouTube-VOS.

A2D consists of 3782 videos from YouTube that were
annotated for nine different actors and seven actions, the fi-
nal valid categories of actor-action pairs constitute 43 pairs.
The dataset has video frames with resolution 320p and it
contains training and testing subsets. Following its proto-
col, we evaluate mean intersection over union on the actor-
action categories in the test set.

2.4. Implementation, training and inference details

In this section, we provide additional implementation
and training details not described in the main paper.

Implementation details. We extract backbone features,
F , with feature activations from the output of each stage’s
last block, which have strides resp. 4, 8, 16, and 32 for
ResNet-101 and 8, 16, 32, 32 for Video-Swin. The features
are used as our initial multiscale features, fs. The task head,
H, in both the AVOS and actor/action segmentation tasks is
instantiated as a small 3D convolutional network consisting
of three layers of convolution with group normalization [18]
and the ReLU activation function. We use clip length, T =
6 during training and inference; correspondingly, we set the
number of learnable queries to, Nq = 6.

Training and inference details. During training, the in-
put images are downsampled so that the smallest side length
becomes 300. We employ data augmentation strategies, in-
cluding vertical and horizontal flipping as well as multiscale
training [12]. Following MATNet [23], we use the train-
ing data in DAVIS’16 [10] and the training set of YouTube-
VOS [20] resulting in 14K images. We use AdamW [7] as
optimizer, with initial learning rate 10−6 for the backbone
and 10−4 for the rest of the model. We use weight decay of
1× 10−4 and train for 210,000 iterations using polynomial
learning rate decay with power 0.9. We initialize the model
from COCO pretrained weights [6], following [1], and we
freeze the batch normalization layer weights for the back-
bone network. We follow a two stage training strategy for
AVOS: (i) We train our model without label propagation;
(ii) we freeze the weights and train the label propagator.
During inference on DAVIS’16 only, we use multiscale in-
ference for postprocessing with predictions averaged over
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Figure 1. Qualitative segmentation results (red masks) showing the efficacy of our full model and specifically the label propagation
module. From top to bottom, rows are arranged as input image, ground truth, our single scale encoder-decoder (baseline), MED-VT w/o
label propagation (w/o LP), and MED-VT. Left: Three frames of DAVIS’16 breakdance. Right: Three frames of MoCA flounder-6.
MED-VT w/o label propagation improves over single scale baseline in identifying the prominent object. Label propagation reduces false
positives (breakdance) and also improves object boundaries and reduces small false negatives (flounder-6).

different scales using scale multipliers, (0.7, 0.8, . . . , 1.2).
As discussed in the main paper, it is standard practice to
show results on DAVIS with and without postprocessing.

For actor/action segmentation, we follow the same set-
tings as for AVOS, except that we train for 46,000 iterations
and we found it necessary to adopt a three stage learning
strategy: (i) We train the single scale encoder MED-VT
without label propagation; (ii) we train the multiscale en-
coder with between scale attention and freeze the rest; (iii)
we train the label propagation module. Recall that the A2D
dataset is harder than the AVOS datasets, because it encom-
passes considerably more categories (e.g., 43 action-actor
tuples) yet far fewer annotations (e.g., three frame-level an-
notations per video); therefore, end-to-end training for all
modules has proven to be difficult. All our models on both
tasks are implemented using the PyTorch library [9] and
were run on an NVIDIA Quadro P6000 GPU.

3. Additional empirical results

In this section we provide additional empirical re-
sults. First, we show qualitative results to demonstrate our
model’s temporal consistency on the prediction level via
comparing with and without label propagation, and on the

feature level via visualizing the first three principal compo-
nents of the features. We also provide a quantitative analysis
of temporal consistency by plotting IoU vs. time for two ex-
ample videos. Second, we provide per category results for
YouTube-Objects. Third, we study via visualizations the
nature of object attention maps output from the multiscale
query learning and attention block, AD. Fourth, we investi-
gate using a single query for the entire input clip vs. a single
query per frame in the input clip. Fifth, we compare using
learnable query positional embedding vs. static sinusoidal
query positional embeddings per scale, pQs .

3.1. Temporal consistency results

Prediction level temporal consistency. We present a
qualitative ablation of temporal consistency on the predic-
tion level using our label propagation with a ResNet101
backbone in Fig 1. It is seen in the left three columns
that the single scale encoder decoder (baseline) fails to seg-
ment objects under deformable motion surrounded by back-
ground objects of the same semantic class (i.e. human). Al-
though multiscale encoder-decoder without label propaga-
tion (w/o LP) is seen to identify the prominent object, there
are some false positives due to the presence of background
objects belonging to the same semantic class. However, the
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Figure 2. Our unified Multiscale Encoder-Decoder Video Transformer (MED-VT) with visualization of the intermediate representations
learned. For the sake of visualization, we use PCA on the intermediate feature maps and show the first three components indicated by RGB.
Input is a clip of N frames where we show only two RGB frames for visualization, i.e. no optical flow input. Backbone features show
the fine scale feature map has precise details, but suffers from noise as it captures only low level semantics; in comparison, coarser scales
have better abstraction (e.g. overall shape of the snake is highlighted), but suffer from lack of precise localization. Multiscale encoding
improves spatiotemporal consistency and focuses on the recurring object. In complement, multiscale decoding provides better foreground
localization via learning multiscale adaptive queries, Qi

s, for iteration, i, and scale, s. The fine scale queries and decoded feature maps are
input to our task specific head and label propagation. Arrows show direction of information flow during processing.
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Figure 3. Temporal consistency analysis using IoU over time in dance-
twirl and flounder videos in Fig.4 main paper. Flounder IoU drop around
frame 53 due to sudden large camera motion.

label propagation in our full model (MED-VT) reduces the
false positive segmentation substantially without damaging
the foreground object by means of many-to-many temporal
propagation of initial labels. The right three columns show
three frames of MoCA flounder-6. This example demon-
strates how our many-to-many label propagation improves
object boundaries and reduces false negatives, as the final
segmentation mask more precisely delineates the shape of
the fish.

As another demonstration of temporal consistency, we
provide IoU over time results in Figure 3. It is clear that
our results are comparably smoother than the baseline, e.g.

show less zig-zag pattern, and thereby document better tem-
poral consistency in the segmentation.

Feature level temporal consistency. We now present
qualitative results to demonstrate the temporal consistency
of our model on the feature level. Here, we focus on
the components within our integrated multiscale encoder-
decoder without label propogation, as the benefits of la-
bel propagation were demonstrated in the previous experi-
ment. For visualization, we compute the first three principal
components, indicated by RGB, for the features at different
scales. Figure 2 shows that our multiscale encoding with
between scale attention, B, improves spatiotemporal consis-
tency and focuses on the recurring object. In complement
it also is seen that our multiscale decoding supports capture
of the foreground object, by projecting the recurring tem-
porally consistent object learned at the coarser resolutions
to the finer resolutions. These operations enable the delin-
eation of fine-grained object details before going through
the task specific head and temporal label propagation.

3.2. YouTube-Objects per category results

Table 1 shows per category results on the YouTube-
Objects dataset. It is seen that our approach outperforms



previous state-of-the-art AVOS approaches, even with the
weaker ResNet-101 backbone and without using extra op-
tical flow input. This observation is especially evident in
the most challenging category, “Train”, where our approach
outperforms the previous state-of-the-art approach that uses
optical flow input by up to 16%.

3.3. Contribution of adaptive queries

To analyze the object attention maps generated by the
learnable queries of the MED-VT decoder, we use visual-
ization. Figure 4 shows the object attention generated by
the attention block, AD, per attention head. We observe
that different attention heads learn to attend to different as-
pects of object representation, including the object extrem-
ities, and that most of the attention heads generate well lo-
calised saliency maps for the primary objects in the video.
It is interesting to observe that while some of the atten-
tion heads generate very good localization of the overall
primary object (e.g. H4, H5, H8), others generate mainly
object boundaries (e.g. H2). Additionally, some of the at-
tention heads instead generate complementary saliency for
the background (e.g. H7). These results provide insight on
the nature of attention generated through use of decoder
queries, which has not been presented in such detail in pre-
vious work on transformer decoders. Furthermore, we ana-
lyze the discriminating attention produced by all the heads
combined, i.e. the object attention map FA; see Fig 5. For
this purpose, we compute the first three principal compo-
nents of our output attention maps on all heads and plot
them in a single image with RGB format. These results
confirm the localization ability of our adaptive foreground
queries that improve with the multiscale query learning in a
coarse-to-fine processing manner.

3.4. Per-clip vs. per-frame queries

The quantitative results of our additional ablation exper-
iment on the number of queries, Nq , are shown in Table
2. As expected, the per-frame foreground queries surpass
the per-clip queries by 1.2% on DAVIS’16 and MoCA. The
object motion and deformation that occurs during a video
entails that learning per-frame queries will generate better
attention maps than per-clip. This ability can lead to high-
lighting different positions and extremities of the primary
object parts in the input clip. It is important especially in
MoCA, which suffers from the object boundaries deform-
ing and blending with the background.

3.5. Query positional embedding

Quantitative results for our ablation experiment on static
vs. learnable position embedding for the dynamic object
queries are shown in Table 3. It is seen that learnable po-
sitional embeddings for the query perform better than si-
nusoidal positional embeddings, with an especially notable

margin on a benchmark that focus on motion rather than
object appearance (i.e. MoCA).

3.6. Training and Inference Efficiency

We perform all benchmarking experiments on a Linux
Server equipped with Intel(R) Xeon(R) W-2155 3.30GHz
CPU and an NVIDIA Quadro P6000 24 GB GPU. We run
all experiments using a single GPU. The training time for
our model is approximately two days. We run other models
using their publicly available code and trained models.

Table 4 shows a comparison of inference time, memory
use and mIoU score on the MoCA dataset. It is seen that
our approach is indeed efficient as it achieves the best per-
formance while being faster in run time. This efficiency is
a result of our approach not depending on time consuming
optical flow estimation and the parallelization enabled by
our ability to process a video clip as a whole rather than
sequentially frame-by-frame.

Due to the use of a multiscale transformer encoder,
our approach requires more GPU memory than other ap-
proaches. An interesting future direction is to investigate
memory efficient video transformers, e.g. [3].

4. Licenses and assets
We use the DAVIS’16 1 and YouTube-VOS 2 datasets

during training, where both are licensed under a Cre-
ative Commons Attribution 4.0 License that allows non-
commercial research use. Additionally, we use YouTube-
Objects 3 and MoCA 4 for evaluation, which are under the
same license. We also used A2D5 dataset with a license that
prevents republishing of the dataset without authors con-
sent.

5. Societal impact
Automatic video object segmentation and actor/action

segmentation have multiple positive societal impacts as they
can be used for a variety of useful applications, e.g. au-
tonomous driving and robot navigation. The class agnostic
segmentation of moving objects and actors in autonomous
driving can encourage safety critical decision making and
reduce accidents from unknown objects outside the closed
set of classes predefined in large-scale datasets. Their use in
robot navigation can also serve a wide variety of impactful
applications such as human-robot interactions, improving
health care systems and elder care.

However, as with many AI abilities, automatic video ob-
ject and actor/action segmentation also can have negative

1https://davischallenge.org/davis2016/code.html
2https://youtube-vos.org/dataset/
3https://data.vision.ee.ethz.ch/cvl/youtube-

objects/
4https://www.robots.ox.ac.uk/˜vgg/data/MoCA/
5https://web.eecs.umich.edu/˜jjcorso/r/a2d/



Category Uses RGB+Flow Uses RGB only
FSEG [2] LVO [14] MATNet [23] RTNet [12] PDB [13] AGS [17] COSNet [8] AGNN [16] Ours Ours†

Airplane(6) 81.7 86.2 72.9 84.1 78.0 87.7 81.1 81.1 88.9 88.3
Bird(6) 63.8 81.0 77.5 80.2 80.0 76.7 75.7 75.9 73.0 80.7

Boat(15) 72.3 68.5 66.9 70.1 58.9 72.2 71.3 70.7 77.2 79.4
Car(7) 74.9 69.3 79.0 79.5 76.5 78.6 77.6 78.1 77.3 86.8
Cat(16) 68.4 58.8 73.7 71.8 63.0 69.2 66.5 67.9 79.6 82.2
Cow(20) 68.0 68.5 67.4 70.1 64.1 64.6 69.8 69.7 76.2 75.8
Dog(27) 69.4 61.7 75.9 71.3 70.1 73.3 76.8 77.4 75.7 80.8

Horse(14) 60.4 53.9 63.2 65.1 67.6 64.4 67.4 67.3 68.7 67.2
Motorbike(10) 62.7 60.8 62.6 64.6 58.3 62.1 67.7 68.3 65.9 69.2

Train(5) 62.2 66.3 51.0 53.3 35.2 48.2 46.8 47.8 69.3 73.5
Mean 68.4 67.5 69.0 71.0 65.4 69.7 70.5 70.8 75.2 78.5

Table 1. Results of object class segmentation on YouTube-Objects. Results shown as mean Intersection over Union (mIoU) per category
as well as overall average across all categories. † indicates our model with Video-Swin backbone. Best results higlighted in bold.

Image Ground-Truth Head H1 Head H2 Head H3 Head H4 Head H5 Head H6 Head H7 Head H8

Figure 4. Object attention generated by Nh = 8 different attention heads based on the dynamic query for randomly selected frames from
two video sequences. Top: three rows show attention maps for the flounder-6 video from MoCA dataset. Bottom: three rows show
attention maps for dance twirl video from DAVIS’16. Attention maps are shown as a heat-map using jet color-space.

Number of query DAVIS’16 MoCA

Per clip (Nq = 1) 81.8 68.2

Per frame (Nq = T ) 83.0 69.4

Table 2. Ablation on the number of queries reporting mIoU. T
is equal to the number of frames in an input clip. Best results
highlighted in bold.

Decoder Query Position Embedding DAVIS’16 MoCA

Static Sinusoidal 80.06 65.4

Learnable 83.0 69.4

Table 3. Learnable position embedding vs static sinusoidal posi-
tion embedding for query reporting mIoU. Best results highlighted
in bold.

societal impacts, e.g. through application to automatic tar-
get detection in military systems and falsification of video

Model Time mIoU Memory

MATNet [54] 0.9 64.2 2577
RTNet [32] 1.9 60.7 3615
COSNet [23] 1.3 50.7 9255
MEDVT (ours) 0.6 69.4 9509

Table 4. Comparison on run time and memory consumption. Best
results highlighted in textbfbold.

documents via object removal. To some extent, movements
are emerging to limit such applications, e.g. pledges on the
part of researchers to ban use of artificial intelligence in
weaponry systems. We have participated in signing that
pledge and are supporters of its enforcement through inter-
national laws.
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