HOLODIFFUSION: Training a 3D Diffusion Model using 2D Images

Supplementary material

1. Views2Voxel-grid Unprojection Mechanism

Given a training video s containing frames I;, we gener-
ate a grid V € RY" XS*SXS of quxiliary features Vipmno €
[—1, 1]V by using the following procedure. We first project
the 3D coordinate xY,,,, of each grid element (m, n,0) to
every video frame I; and sample corresponding 2D image
features. The 2D image features fJ . are obtained using
a ResNet32 [3] encoder E(I;). We use bilinear interpola-
tion for sampling continuous values and use zero-features
for projected points that lie outside the Image. Thus, we
obtain Ngames features (corresponding to each frame in the
video) for each grid element of the voxel-grid. We accu-
mulate these features using the Accumulator MLP A,...
The accumulator A, takes as input [f7 . :v7], where [;]
denotes concatenation and v’ corresponds to the viewing
direction corresponding to the camera center of 4™ frame,
and outputs [0 . - f"7 1. Finally, we compute the feature

at each of the voxel grid centers as a weighted sum of the
newly mapped features:

ano = Z O-gnnof/znno' (1)
J

2. Implementation Details

In this section, we provide more details related to imple-
menting our proposed method.

2.1. Network Architectures

Our proposed pipeline (Fig 2. of main paper) contains
three neural components: The Encoder, Diffusion UNet and
Renderer. The Encoder network is a ResNet32 model [3].
For the main diffusion network, we use a 3D variant of
the UNet used by Dhariwal and Nichol [I]. The model
comprises residual blocks containing downsampling, up-
sampling, and self-attention blocks (with additive residual
connections).

2.2. Renderer

In order to decode the generated voxel-grid of features
into density and radiance fields, we use a NeRF-like [7]
MLP (Multi-layer perceptron). The MLP contains 4 layers
of 256 hidden units with a skip-connection on the 3rd hid-
den layer. The skip connection concatenates the input fea-
tures with the intermediate hidden layer features. Similar to
NeRF, and for the reasons described in Zhang et al. [9], we

Interpolated voxel
features
64

. density

Interpolated voxel
features

64 === 256 == 25 === 256 === 256 == 128 P> Radiance

+

27
Sinusoidally encoded
viewing directions

Figure I. Architecture of the RenderMLP used for decoding the
features of the generated voxel grids into density and radiance
fields.

also input the view-directions at a latter layer in the MLP.
The input features are not encoded, but we apply sinusoidal
encodings [7, 8] to the input viewing directions with max
frequency level L = 4. The activation functions used are:
LeakyReLU for the hidden layers, Softplus for the den-
sity output head, and the Sigmoid for the radiance output
head. All trainable weights are initialized using the Xavier
uniform initialization [2]. Figure I shows the detailed archi-
tecture of the RenderMLP.

2.3. Training Details

We train the full HOLODIFFUSION pipeline for 1000
epochs over the dataset containing the object-centric videos.
During training, we randomly sample 11 source views for
unprojecting into the initial voxel-grid, and 1 target (re-
served) novel view for computing loss. The latter enforces
3D structure in the generated samples. We use L2 dis-
tance between the rendered views and the G.T. views as
the photometric-consistency loss. In terms of hardware,
we train all our models on 4-8 32GB-V100 GPUs, with a
batch-size equal to the number of GPUs in use, i.e.,
each GPU processes one voxel-grid during training. We use
Adam [6] optimizer with a learning rate («) of 0.00005 and
default values of 31, B2, and € for all the trainable networks
during training.



2.4. Diffusion Details

We use the DDPM [4] diffusion-formulation for our
bootstrap-latent-diffusion module as described in section
4.2 of the main paper. We use the default ¢ = 1000
time-steps and the default 3; schedule in our experiments:
wherein we set S5 = 0.0001; 8999 = 0.02. Rest of the S;
values are obtained by linearly interpolating between the S
and Bggg. Finally, to improve the input conditioning of our
diffusion module, we apply tanh to the voxel features to
constrain their values in the range of [-1, 1], as proposed in
Karras et al. [5]. This allows us to apply [-1, 1] clipping
during sampling.

References

[1] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. Advances in Neural Information
Processing Systems, 34:8780-8794, 2021. 1

[2] Xavier Glorot and Yoshua Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on artifi-
cial intelligence and statistics, pages 249-256. JMLR Work-
shop and Conference Proceedings, 2010. 1

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. arXiv preprint
arXiv:1512.03385, 2015. 1

[4] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840-6851, 2020. 2

[5] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elu-
cidating the design space of diffusion-based generative mod-
els. arXiv preprint arXiv:2206.00364, 2022. 2

[6] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. Proc. ICLR, 2015. 1

[7] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. Proc. ECCV, 2020. 1

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NIPS, 2017. 1

[9] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields. arXiv preprint arXiv:2010.07492, 2020. 1



	. Views2Voxel-grid Unprojection Mechanism
	. Implementation Details
	. Network Architectures
	. Renderer
	. Training Details
	. Diffusion Details


