
HOLODIFFUSION: Training a 3D Diffusion Model using 2D Images

Supplementary material

1. Views2Voxel-grid Unprojection Mechanism
Given a training video s containing frames Ij , we gener-

ate a grid V̄ ∈ RdV ×S×S×S of auxiliary features V̄:mno ∈
[−1, 1]dV by using the following procedure. We first project
the 3D coordinate xV

mno of each grid element (m,n, o) to
every video frame Ij and sample corresponding 2D image
features. The 2D image features f j

mno are obtained using
a ResNet32 [3] encoder E(Ij). We use bilinear interpola-
tion for sampling continuous values and use zero-features
for projected points that lie outside the Image. Thus, we
obtain Nframes features (corresponding to each frame in the
video) for each grid element of the voxel-grid. We accu-
mulate these features using the Accumulator MLP Aacc.
The accumulator Aacc takes as input [f j

mno; v
j ], where [; ]

denotes concatenation and vj corresponds to the viewing
direction corresponding to the camera center of jth frame,
and outputs [σj

mno; f
′j
mno]. Finally, we compute the feature

at each of the voxel grid centers as a weighted sum of the
newly mapped features:

Fmno =
∑
j

σj
mnof

′j
mno. (1)

2. Implementation Details
In this section, we provide more details related to imple-

menting our proposed method.

2.1. Network Architectures

Our proposed pipeline (Fig 2. of main paper) contains
three neural components: The Encoder, Diffusion UNet and
Renderer. The Encoder network is a ResNet32 model [3].
For the main diffusion network, we use a 3D variant of
the UNet used by Dhariwal and Nichol [1]. The model
comprises residual blocks containing downsampling, up-
sampling, and self-attention blocks (with additive residual
connections).

2.2. Renderer

In order to decode the generated voxel-grid of features
into density and radiance fields, we use a NeRF-like [7]
MLP (Multi-layer perceptron). The MLP contains 4 layers
of 256 hidden units with a skip-connection on the 3rd hid-
den layer. The skip connection concatenates the input fea-
tures with the intermediate hidden layer features. Similar to
NeRF, and for the reasons described in Zhang et al. [9], we

Figure I. Architecture of the RenderMLP used for decoding the
features of the generated voxel grids into density and radiance
fields.

also input the view-directions at a latter layer in the MLP.
The input features are not encoded, but we apply sinusoidal
encodings [7, 8] to the input viewing directions with max
frequency level L = 4. The activation functions used are:
LeakyReLU for the hidden layers, Softplus for the den-
sity output head, and the Sigmoid for the radiance output
head. All trainable weights are initialized using the Xavier
uniform initialization [2]. Figure I shows the detailed archi-
tecture of the RenderMLP.

2.3. Training Details

We train the full HOLODIFFUSION pipeline for 1000
epochs over the dataset containing the object-centric videos.
During training, we randomly sample 11 source views for
unprojecting into the initial voxel-grid, and 1 target (re-
served) novel view for computing loss. The latter enforces
3D structure in the generated samples. We use L2 dis-
tance between the rendered views and the G.T. views as
the photometric-consistency loss. In terms of hardware,
we train all our models on 4-8 32GB-V100 GPUs, with a
batch-size equal to the number of GPUs in use, i.e.,
each GPU processes one voxel-grid during training. We use
Adam [6] optimizer with a learning rate (α) of 0.00005 and
default values of β1, β2, and ϵ for all the trainable networks
during training.



2.4. Diffusion Details

We use the DDPM [4] diffusion-formulation for our
bootstrap-latent-diffusion module as described in section
4.2 of the main paper. We use the default t = 1000
time-steps and the default βt schedule in our experiments:
wherein we set β0 = 0.0001;β999 = 0.02. Rest of the βt

values are obtained by linearly interpolating between the β0

and β999. Finally, to improve the input conditioning of our
diffusion module, we apply tanh to the voxel features to
constrain their values in the range of [-1, 1], as proposed in
Karras et al. [5]. This allows us to apply [-1, 1] clipping
during sampling.

References
[1] Prafulla Dhariwal and Alexander Nichol. Diffusion models

beat gans on image synthesis. Advances in Neural Information
Processing Systems, 34:8780–8794, 2021. 1

[2] Xavier Glorot and Yoshua Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on artifi-
cial intelligence and statistics, pages 249–256. JMLR Work-
shop and Conference Proceedings, 2010. 1

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. arXiv preprint
arXiv:1512.03385, 2015. 1

[4] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851, 2020. 2

[5] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elu-
cidating the design space of diffusion-based generative mod-
els. arXiv preprint arXiv:2206.00364, 2022. 2

[6] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. Proc. ICLR, 2015. 1

[7] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. Proc. ECCV, 2020. 1

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NIPS, 2017. 1

[9] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields. arXiv preprint arXiv:2010.07492, 2020. 1


	. Views2Voxel-grid Unprojection Mechanism
	. Implementation Details
	. Network Architectures
	. Renderer
	. Training Details
	. Diffusion Details


