
Supplementary material for FIANCEE: Faster Inference of Adversarial
Networks via Conditional Early Exits

Karpikova Polina *1,2, Radionova Ekaterina *1, Yaschenko Anastasia *1,2, Spiridonov Andrei *1

Kostyushko Leonid3, Fabbricatore Riccardo 1, Ivakhnenko Aleksei 1†

1Samsung AI Center - Moscow, Russia 2Higher School of Economics - Moscow, Russia
3Lomonosov Moscow State University - Russia

Contents

S1. Qualitative results S1
S1.1. The OASIS pipeline . . . . . . . . . . . . . S1

S1.1.1 Architectures and dimensions . . . S1
S1.1.2 Training details . . . . . . . . . . . S2

S1.2. The MegaPortraits pipeline . . . . . . . . . . S3
S1.2.1 Architectures and dimensions . . . S3
S1.2.2 Training details . . . . . . . . . . . S3

S2. Comparisons S5

S3. Complexity analysis S6

S1. Qualitative results
S1.1. The OASIS pipeline

S1.1.1 Architectures and dimensions

The original OASIS [13] generative DNN consists of an
initial 2D convolutional layer, followed by 6 SPADE-
ResBlock modules [11] and a final Conv2D, LeakyRelu,
and TanH. Its total number of parameters is 74M. We ap-
pended 4 branches to it, after ResBlock 1, 2, 3, and 4 re-
spectively. Each branch consisted of the same number of
ResBlock modules as the remaining part of the backbone.
In order to create lighter computational paths, we decreased
the number of channels of the branches’ modules. To do it
in a coherent manner, we decided to scale down all chan-
nels uniformly by multiplying them by a scale factor (SF).
Since such scaling with arbitrary coefficients may produce
channel numbers too small to be of use, we restrained its
effect by imposing a minimum number of channels, under
which no scaling was forced. In other words, if the min-
imum number is 64, and we enforce factor of 1/3 starting
from 128 , the new channel number will be 64, instead of
43. We explored a plethora of different scale factors and
minimum channels, which we report in Table S8.

The database we employed was created using 500 se-
mantic maps randomly chosen from the training dataset,
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Figure S1. OASIS pipeline, comparison between the efficacy of
different scale factors. The minimum number of channels is 64.
From top to bottom: SF = 1/2, 1/3, 1/4.

each concatenated with 100 different 3D noise tensors to
produce a variety of inputs, that were processed and di-
vided into 128 non-overlapping patches, yielding a total of
500×100×128 = 6.4M key-value pairs. Since redundancy
in the key space is rather probable, we extracted from this
multitude of pairs only up to 5K for each semantic class us-
ing FPS sampling [4], for a total of 122 100 pairs. Each key
is a 1024-dimensional vector, and each value consists of a
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SF Bank Branch 1 Branch 2 Branch 3 Branch 4
FID↓ mIOU↑ FID↓ mIOU↑ FID↓ mIOU↑ FID↓ mIOU↑

1/2 ✗ 64.2 59.8 59.3 62.6 55.9 62.2 50.1 64.2
✓ 52.8 67.5 51.8 68.7 49.5 68.5 48.1 69.3

1/3 ✗ 65.9 61.4 59.5 61.6 57.2 65.2 53.1 69.4
✓ 54.1 65.5 53.6 69.6 50.6 68.8 48.4 69.6

1/4 ✗ 69.6 57.5 62.2 61.8 56.4 65.5 53.0 68.3
✓ 54.9 65.5 54.4 67.1 53.0 66.7 49.7 69.4

Backbone 47.7 69.3

Table S1. Quantitative results for the OASIS pipeline. The minimum number of channels is 64.
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Figure S2. OASIS pipeline, comparison between the database effect to quality distribution for different scale factors. The minimum number
of channels is 64. Left to right: SF = 1/2, 1/3, 1/4.

float32 tensor of dimensions (512, 4, 4). The total size of
stored parameters is thus 1.1G.

During the retrieval, the guiding features are taken after
the first Conv2D and ResNet blocks of the backbone. Then,
for each on the N ∈ [1, 35] semantic classes present in the
input, these features are cut into 128 patches and their 1024-
dimensional space is scanned in order to find the closest
key from the database with corresponding semantic class.
This search is performed quite rapidly thanks to the FAISS
library [7], and thus does not burden computations.

Once retrieved all 128 patches, a guiding feature is con-
structed by gluing them together. This feature is concate-
nated to the input of each branch, and for this reason their
number of channels must be increased. When employing
the database, the input channels for the first ResBlocks in
each branch, reported in Tab. S8, are multiplied by 1.5.
The memory overhead from the MegaPortrait’s database
amounts to 21 Mb. We expect it to be uploaded to the GPU
memory, since its size is much lower than that of the net-
work, weighting 131 Mb. On a desktop GPU (P40), the
retrieval latency is up to 5 ms, which constitutes 16% of the
smallest branch’s inference time. We assume our method
will be used to speedup networks used in real-time applica-
tions, which usually run on edge devices, and use a batch of
size 1 to minimize latency.

The last key component of our pipeline is the Predictor.
It’s architecture is summarized in Table S7.

S1.1.2 Training details

For the implementation of our method we had to train all
branches and the predictor.

Branches for OASIS were trained by competing against
copies of the original OASIS discriminator. Alongside,
we also imposed VGG [6] and LPIPS [16] losses using as
ground truth the image synthesized by the backbone,

LBranch = LOASIS + αLVGG + βLLPIPS, (1)

where the overall learning rate was set to 4 × 10−4 and
the coefficients were set to α = 10 and β = 5 in order
to equalize the losses’ contribution. The discriminators re-
tained their original losses. Both the generator and the dis-
criminators were trained via Adam optimization [8] with
β1 = 0, β2 = 0.999. The computations were performed
using distributed data parallel from the PyTorch library [12]
onto 2 P40 NVIDIA GPUs with batch = 2 and lasted ap-
proximately 6 days. The resultant qualities can be found in
Tab. S1 and Tab. S2.

The OASIS predictor was trained to output images’ qual-
ity for each branch. We did it by imposing minimum



squared error loss between its predictions and the actual
qualities:

LPred(z, c;S) = ∥P (z, c)− S∥2. (2)

The learning rate was set to 0.01, the loss was optimized
via stochastic gradient descent with cosine scheduler [9].
The choice of training set for the predictor was not trivial,
since the pipeline inputs consist of a semantic map con-
catenated to a 3D noise tensor. Due to the high dimen-
sionality of the noise space, sampling uniformly from it
does not guarantee any convergence for the learning pro-
cess. Instead, we randomly extracted 100 3D noise ten-
sors and combined them with 500 semantic maps from the
Cityscapes [1] training set, thus obtaining 50 000 exam-
ples. We then tested this technique by using 300 and 500
noise tensors. Once trained, we measured the predictor’s
error by using 500 images from Cityscapes’ validation set
combined with the same noises used for the training and
with new noises. The results are reported, respectively, in
Table S3 and Table S4.

Noises B 1 B 2 B 3 B 4 Mean error

100 5% 6% 6% 7% 6%
300 5% 5% 6% 6% 5.5%
500 5% 5% 6% 6% 5.5%

Table S3. Validation error for the OASIS predictor. The validation
set was created joining the noises used for the training to the 500
semantic maps from the validation set of the Cityscapes dataset.

Noises B 1 B 2 B 3 B 4 Mean error

100 14% 14% 13% 16% 14%
300 10% 11% 11% 15% 12%
500 10% 10% 10% 13% 11%

Table S4. Test error for the OASIS predictor. The test set was
created joining random noises to the 500 semantic maps from the
validation set of the Cityscapes dataset.

S1.2. The MegaPortraits pipeline

S1.2.1 Architectures and dimensions

The original MegaPortraits [3] generative DNN for images
of resolution 512 × 512 pixels consists of a set of mod-
ules predicting a volumetric representation and another set,
called G2D, that renders an output image from a processed
volume. Its total number of parameters is 32M. We ap-
pended our branches after ResBlock2D modules 2, 4, 6.
Their respective length is 7, 5, 3. Just as before, we cre-
ated lighter computational paths by scaling down all chan-
nels uniformly. The new channel numbers were obtained
multiplying the original ones by a scale factor. As before,

we restricted the effect of this scaling by imposing a mini-
mum number of channels equal to 24, under which no fur-
ther scaling was forced. We enforced a plethora of differ-
ent scale factors, which we report in Table S9. For this
task, we used a database containing 960 key-value pairs.
The values consisted of RGB images of the source subject,
uniformly covering the space of head rotations and expres-
sions. The keys were obtained exploiting the MegaPortraits
initial modules, the so-called encoders, that yield the Euler
angles at which a head is rotated, as well as a multitude of
parameters encoding face expressions. Each key encoded
3 angles and a 512-dimensional vector for the expressions.
The total size of stored parameters is therefore 0.9G.

The database was searched for the closest key during the
inference phase with the aid of the FAISS library [7]. Each
retrieved image was subsequently concatenated to the input
of all ResBlock2D modules in every branch, thus when em-
ploying the database 3 channels must be added to all input
channels in Table S9. The architecture of the MegaPortraits
predictor is summarized in Table S7.

S1.2.2 Training details

For the MegaPortraits pipeline, we trained our branches us-
ing hinge adversarial loss, each branch competing against
a copy of multi-scale patch discriminator [17]. Addition-
ally, we imposed feature matching [14], VGG19 percep-
tual [6], L1 and MS-SSIM [15] losses. We also use a spe-
cialized gaze loss computed with a VGG16 network that
distills gaze detection (RT-GENE, [5]) and blink detection
(RT-BENE, [2]) systems into one model. More details on
the losses can be found in MegaPortraits [3]. All losses are
computed in relation to the backbone images and using only
foreground regions. Overall, the total loss is

LBranch = LAdv + c1LVGG + c2LMS-SSIM + c3LL1+

c4LFM + c5LGL (3)

with the following weights: c1 = 18, c2 = 0.84, c3 = 0.16,
c4 = 40, and c5 = 5. Branches and discriminators were
trained using AdamW optimizers [10] with β1 = 0.05,
β2 = 0.999, ϵ = 10−8, weight decay = 10−2 and initial
learning rate = 2 × 10−4. Cosine learning rate schedulers
were employed during training with minimum learning rate
of 10−6. Computations were done via PyTorch distributed
data parallel. The model was trained in mixed precision on
2 P40 NVIDIA GPUs with effective batch size 6 for ap-
proximately 3 days. The resultant qualities can be found in
Tab. S5.

For each input, the Predictor estimates LPIPS for all
branches. To train it, we imposed MAE loss between
predicted and state of truth similarity: LPred(z, c;S) =
|P (z, c) − S|. We employed the AdamW optimizer with
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Figure S3. OASIS pipeline, min channels=32, comparison between the efficacy of different scale factors. Top to bottom, left to right:
SF = 1/2, 1/3, 1/4, 1/6.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
LPIPS

0

5

10

15

20

Nu
m

be
r o

f i
m

ag
es

w/ Db      w/o Db
4
3
2
1

4
3
2
1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
LPIPS

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Nu
m

be
r o

f i
m

ag
es

w/ Db      w/o Db
4
3
2
1

4
3
2
1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
LPIPS

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Nu
m

be
r o

f i
m

ag
es

w/ Db      w/o Db
4
3
2
1

4
3
2
1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
LPIPS

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Nu
m

be
r o

f i
m

ag
es

w/ Db      w/o Db
4
3
2
1

4
3
2
1

Figure S4. OASIS pipeline, comparison between database effect to quality distribution for min channels=32 and different scale factors.
Top to bottom, left to right: SF = 1/2, 1/3, 1/4, 1/6.



SF Bank Branch 1 Branch 2 Branch 3 Branch 4
FID↓ mIOU↑ FID↓ mIOU↑ FID↓ mIOU↑ FID↓ mIOU↑

1/2 ✗ 58.8 62.8 58.3 63.3 53.2 66.9 51.3 69.0
✓ 52.3 65.6 51.4 67.8 49.6 67.3 48.6 67.8

1/3 ✗ 66.8 57.1 60.7 62.6 52.8 65.9 51.9 66.7
✓ 55.2 66.7 54.1 66.1 53.1 67.0 51.9 68.3

1/4 ✗ 69.5 59.7 60.8 61.4 58.4 65.1 54.4 67.4
✓ 57.7 65.9 57.4 66.7 55.3 67.5 51.2 67.7

1/6 ✗ 69.5 56.7 65.2 62.1 61.9 65.1 54.0 66.4
✓ 60.6 67.6 58.1 66.8 57.6 67.0 51.4 68.9

Backbone 47.7 69.3

Table S2. Quantitative results for the OASIS pipeline at different scale factors. The minimum number of channels is 32.

Cross-reenactment
SF Bank Branch 1 Branch 2 Branch 3

FID↓ FID↓ FID↓

1/3 ✗ 56.05 52.77 49.08
✓ 54.60 52.40 50.44

1/6 ✗ 61.30 55.58 51.00
✓ 59.01 54.08 50.84

1/8 ✗ 61.84 55.66 50.88
✓ 57.94 54.88 50.96

1/15 ✗ 66.87 61.75 51.56
✓ 57.25 57.70 51.85

Backbone 50.28

Table S5. Quantitative results for the MegaPortraits pipeline,
cross-reenactment.

B 1 B 2 B 3 Mean error

1% 1% 2% 1%

Table S6. Test error for the MegaPortraits predictor for SF = 1/8.

β1 = 0.05, β2 = 0.999 and initial learning rate 2 × 10−4

alongside cosine learning rate scheduler.

S2. Comparisons

We implemented all architectures listed in Table S8 and
Table S9. The overall results for the OASIS pipeline can
be compared in Fig. S1 and Fig. S3, while for the Mega-
Portraits pipeline they are shown in Fig. S6 . We can see
how different scale factors yield different branch distribu-
tions. The effect of the database on the branches of all scale
factors is reported in Fig. S2.
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of the predictor (P). The predictor was set to enforce thresholds
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Figure S8. MegaPortraits pipeline, distribution of images routed
to different branches in relation to their head rotation angle. First
row SF = 1/8, second row SF = 1/15.
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Figure S6. MegaPortraits pipeline, comparison between the efficacy of different scale factors. From left to right: SF =
1/3, 1/6, 1/8, 1/15.
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Figure S7. MegaPortraits pipeline, comparison between database effect to quality distribution for different scale factors. Left to right:
SF = 1/3, 1/6, 1/8, 1/15.

S3. Complexity analysis

For the MegaPortraits pipeline, the quality of synthe-
sized images seems to correlate with the angle at which the
head is rotated. This is reflected in our method as well. In-

deed, heads rotated at higher angles have greater probability
of being routed to a later branch, as evidenced by Fig. S8.



MegaPortraits Predictor
Module (in, out)

Flatten
Linear + LeakyReLu (1584, 512)
Linear + LeakyReLu (512, 256)
Linear + LeakyReLu (256, 128)
Linear + LeakyReLu (128, 64)
Linear + LeakyReLu (64, 3)

Total number of parameters = 1M FLOPs = 1M

OASIS Predictor
Module (in, out)

Conv2D + ReLu (1024, 512)
ResBlock (512, 512)

Flaten
Linear + ReLu (10752, 4096)
Linear + ReLu (4096, 1024)
Linear + ReLu (1024, 512)
Linear + ReLu (512, 128)

Linear (128, 5)
Total number of parameters = 58M FLOPs = 250M

Table S7. Architecture of the MegaPortraits predictor. Dimensions are in the form (input channels, output channels).

OASIS branches SF=1/2 Min. channels = 64

Module Branch 1 Branch 2 Branch 3 Branch 4

SPADE-ResBlock (1024, 512, 16, 32) (1024, 256, 32, 64) (512, 128, 64, 128) (256, 64, 128, 256)
SPADE-ResBlock (512, 256, 32, 64) (256, 128, 64, 128) (128, 64, 128, 256) (64, 64, 256, 512)
SPADE-ResBlock (256, 128, 64, 128) (128, 64, 128, 256) (64, 64, 256, 512)
SPADE-ResBlock (128, 64, 128, 256) (64, 64, 256, 512)
SPADE-ResBlock (64, 64, 256, 512)

Conv2D, Tanh (64, 3, 256, 512) (64, 3, 256, 512) (64, 3, 256, 512) (64, 3, 256, 512)
Total number of parameters w/o bank 45.4M w/ bank 55.7M

OASIS branches SF=1/3 Min. channels = 64

Module Branch 1 Branch 2 Branch 3 Branch 4

SPADE-ResBlock (1024, 336, 16, 32) (1024, 168, 32, 64) (512, 84, 64, 128) (256, 64, 128, 256)
SPADE-ResBlock (336, 168, 32, 64) (168, 84, 64, 128) (84, 64, 128, 256) (64, 64, 256, 512)
SPADE-ResBlock (168, 84, 64, 128) (84, 64, 128, 256) (64, 64, 256, 512)
SPADE-ResBlock (84, 64, 128, 256) (64, 64, 256, 512)
SPADE-ResBlock (64, 64, 256, 512)

Conv2D, Tanh (64, 3, 256, 512) (64, 3, 256, 512) (64, 3, 256, 512) (64, 3, 256, 512)
Total number of parameters w/o bank 35.6M w/ bank 44.5M

OASIS branches SF=1/4 Min. channels = 64

Module Branch 1 Branch 2 Branch 3 Branch 4

SPADE-ResBlock (1024, 256, 16, 32) (1024, 128, 32, 64) (512, 64, 64, 128) (256, 64, 128, 256)
SPADE-ResBlock (256, 128, 32, 64) (128, 64, 64, 128) (64, 64, 128, 256) (64, 64, 256, 512)
SPADE-ResBlock (128, 64, 64, 128) (64, 64, 128, 256) (64, 64, 256, 512)
SPADE-ResBlock (64, 64, 128, 256) (64, 64, 256, 512)
SPADE-ResBlock (64, 64, 256, 512)

Conv2D, Tanh (64, 3, 256, 512) (64, 3, 256, 512) (64, 3, 256, 512) (64, 3, 256, 512)
Total number of parameters w/o bank 30.9M w/ bank 39.1M

Table S8. Dimensions of modules for all branches in the form of (input channels, output channels, image height, image width). In all
branches, after each SPADE-ResBlock but the last, we also applied 2D nearest-neighbour upsampling, thus doubling the height and width.
When employing the database, the input channels for the first ResBlock in each branch, are multiplied by 1.5.
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Figure S9. Samples for the MegaPortraits pipeline on SF = 1/8. The background is inpainted.



Figure S10. Examples of bank images for different rotations (top) and expressions (bottom).
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Figure S11. Samples for the OASIS pipeline on SF = 4



Semantic map Start image Backbone

Figure S12. Examples of start images visualizations for the OASIS pipeline. For each feature patch we found the closest one in the bank
and then showed corresponding RGB patch of backbone output.



MegaPortraits branches SF=1/3 Min. channels = 24

Module Branch 1 Branch 2 Branch 3

ResBlock2D (512, 170) (512, 170) (512, 170)
ResBlock2D (170, 170) (170, 170) (170, 85)
ResBlock2D (170, 170) (170, 85) (85, 42)
ResBlock2D (170, 170) (85, 42)
ResBlock2D (170, 85) (42, 24)
ResBlock2D (85, 42)
ResBlock2D (42, 24)

ReLu, Conv2D, Tanh (24, 3) (24, 3) (24, 3)
Total number of parameters w/ bank 5.6M

MegaPortraits branches SF=1/6 Min. channels = 24

Module Branch 1 Branch 2 Branch 3

ResBlock2D (512, 85) (512, 85) (512, 85)
ResBlock2D (85, 85) (85, 85) (85, 42)
ResBlock2D (85, 85) (85, 42) (42, 24)
ResBlock2D (85, 85) (42, 24)
ResBlock2D (85, 42) (24, 24)
ResBlock2D (42, 24)
ResBlock2D (24, 24)

ReLu, Conv2D, Tanh (24, 3) (24, 3) (24, 3)
Total number of parameters w/ bank 2.3M

MegaPortraits branches SF=1/8 Min. channels = 24

Module Branch 1 Branch 2 Branch 3

ResBlock2D (512, 64) (512, 64) (512, 64)
ResBlock2D (64, 64) (64, 64) (64, 32)
ResBlock2D (64, 64) (64, 32) (32, 24)
ResBlock2D (64, 64) (32, 24)
ResBlock2D (64, 32) (24, 24)
ResBlock2D (32, 24)
ResBlock2D (24, 24)

ReLu, Conv2D, Tanh (24, 3) (24, 3) (24, 3)
Total number of parameters w/ bank 1.6M
MegaPortraits branches SF=1/15 Min. channels = 24

Module Branch 1 Branch 2 Branch 3

ResBlock2D (512, 34) (512, 34) (512, 34)
ResBlock2D (34, 34) (34, 34) (34, 24)
ResBlock2D (34, 34) (34, 24) (24, 24)
ResBlock2D (34, 34) (24, 24)
ResBlock2D (34, 24) (24, 24)
ResBlock2D (24, 24)
ResBlock2D (24, 24)

ReLu, Conv2D, Tanh (24, 3) (24, 3) (24, 3)
Total number of parameters w/ bank 0.8M

Table S9. MegaPortraits pipeline. Dimensions of modules for all branches in the form of (input channels, output channels). The Res-
Block2D are made of layers BatchNorm2D, h-swish, Conv2D, BatchNorm2D, h-swish, Conv2D, Conv2D with skipped connections. In
all branches, before every ResBlock2D, we also applied 2D bilinear upsampling. When employing the database, all input channel numbers
must be increased by 3.
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