
HARP: Personalized Hand Reconstruction from Monocular RGB Videos
**Appendix**

A. Datasets

In this section, we describe the details of each dataset used in the experiments. We reiterate that our goal is to propose a
scalable and robust system that can create faithful hand avatars given a short video sequence that is captured by commodity
hardwares, such as a smartphone. Such setup facilitates the utility of our method in downstream applications, e.g., personal-
ized hand avatar creation for end-users of AR/VR devices. Unfortunately, there is no existing dataset designed and captured
for this scenario. Therefore we capture the Hand Appearance Dataset with a smartphone in a room with common lighting
conditions (e.g., light bulbs on the ceiling).

To demonstrate that HARP is robust to different capture setups, we additionally test HARP on sequences from the Inter-
Hand2.6M [12] and HanCo [17] datasets. To supplement the lack of accurate ground truth to evaluate the pose refinement
results, we create our Synthetic Dataset using a ray tracing engine. The details of each dataset are as follows:

Hand Appearance Dataset. The dataset is partitioned into three parts as described in the main paper. All of the sequences
are captured with a hand-held smartphone camera in different conditions. The foreground masks, which include both the
hand and arm, are obtained using an off-the-shelf segmentation tool Unscreen [4]. The images are resized to 448x448 pixels,
which we use as a default size in all of our experiments unless indicated otherwise.

InterHand2.6M [12]. We demonstrate HARP’s ability to create an avatar from existing datasets on sequences from the
Interhand2.6M dataset. The sequences in the dataset are captured in a capture dome with a multi-view camera rig and uniform
lighting. As the dataset does not include segmentation masks, we obtain foreground-background masks using RVM [9]. We
notice that flares from light bulbs in the capture dome often interfere with the segmentation and are sometimes categorized
as foreground. We note that such artifact is difficult to remove and could degrade the optimized appearance. To avoid such
artifacts, we use 500 frames from cam400266 of Capture0/ROM03 RT No Occlusion from the 30-FPS test set. The images
are cropped to 334x334 pixels with a hand at the center.

Synthetic Dataset. In order to evaluate the pose refinement results, we create the synthetic dataset with perfect ground truth
pose annotations. The images are rendered using the ray tracing engine Cycles in Blender [2]. We leverage the NIMBLE
model [7] to obtain the hand meshes and appearances. The appearances are manually selected to ensure diversity in size
and skin color from the appearances sampled from NIMBLE. Due to the dependency on NIMBLE, the generated hands are
truncated at the wrist and the arm is not visible in the images. For rendering, we use the same Blender settings as the one
provided in the demo of NIMBLE. The hand motions are the same in all of the generated sequences. The main differences
between each sequence are the viewpoint, the hand shape, and the hand appearance. For each identity, we generate two
motions, one is a hand-flipping motion and another one with finger movement. The motions are 5 seconds long at 30 FPS.
Fig. A.1 shows the images from our Synthetic dataset.

HanCo [17]. We show the results from the following sequences in Fig. 6 in the main paper: 0 (cam7), 2 (cam1), 10 (cam4),
and 27 (cam4). Both sides of the hand are visible in these sequences. The provided foreground-background masks are used
as input for the optimization. Nevertheless, note that the dataset is not suitable for avatar creation and should be treated only
as a reference due to the low resolution of the image at 224x224 pixels and the unrealistic light stage. Samples images are
shown in Fig. A.2.

Figure A.1. Synthetic dataset. Each image shows the first frame and the middle frame from each sequence.
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Figure A.2. Sample images and masks from the HanCo [17] dataset. The dataset is not suitable for avatar creation because of the low
resolution and unrealistic light stage.

B. Baselines

To ensure a fair comparison between HARP and the baseline methods, all of the baselines are optimized at test time, with
an equivalent number of epochs when possible. We use the officially released code from each baseline. As some of the
baselines are not designed for hand avatar creation via optimization, we need to make adjustments and modifications, which
we describe for each baseline in the followings. In the case of HTML [14] and NIMBLE [7], we use the same optimization
pipeline as in HARP, replacing only the relevant parts with their models. All the methods take the same images and pose
initialization as input.

HTML [14]. We replace the UV texture and normal map of HARP with the texture produced by the HTML model. The
HTML texture vector is optimized instead of the HARP texture. As the HTML texture is defined on the surface of MANO [16]
hand mesh, we use the MANO template instead of our HARP template. In addition, we allow vertex displacement along
normals in the same manner as in HARP. The same optimizers and loss terms are used in the optimization.

NIMBLE [7]. As the NIMBLE model provides both shape and appearance space, we replace the HARP hand geometry
and appearance with NIMBLE. The NIMBLE pose, shape, and appearance parameters are updated during the optimization.
The same optimizers and loss terms are applied. For initialization, we fit NIMBLE to the METRO prediction instead of our
template, using the same formulation as described in Sec. C.2.

S2Hand [1]. We modified the original S2hand code which predicts the appearance from the input image to allow the
optimization with photometric losses used in HARP. Because the S2Hand model requires ground truth camera parameters
for projecting the predicted mesh onto the image frame, during evaluation we optimize the camera parameters by minimizing
the photometric loss with respect to the input image. This optimization is done separately to obtain the best match for
each frame. We acknowledge that the optimized texture quality might be affected by the less accurate pose estimation from
S2Hand. Nevertheless, due to the fact that S2hand requires ground truth camera intrinsics for image projection but METRO
estimates camera extrinsics for a fixed set of intrinsics, it is not possible to optimize S2Hand with our coarse initialization.

Neural Head Avatar [3]. As this method is designed specifically for reconstructing a human head avatar, we make several
modifications to adapt it to the hand avatar creation task. Notably, we drop the dependency on face segmentation, landmark,
and predicted normals from the model. For segmentation, there are only foreground and background, which are the same
as the ones used in other baselines. For landmarks, the landmark locations are replaced with hand key point locations. The
predicted normal input is discarded from the model. In terms of implementation, a fixed identity is used in place of the
unavailable input. For the geometry, we replace the FLAME [6] model with our hand template with arm (details in Sec. C.1).
We follow the official code and instructions for training and evaluating the results.

C. Implementation Details

C.1. Hand Templates

In order to create a hand avatar, we observe that the truncation at the wrist in the MANO [16] model is problematic to the
appearance-creation process and does not reflect the reality that a hand is always attached to an arm. Thus, we implement a
version of the hand model with an arm, which we derive from SMPLX [13] by truncating the mesh at the elbow, moving the
root joint to the right-hand wrist, and linearly subdividing the mesh once. As a result, our hand model has two modes: hand-
only and hand-with-arm, which can be used interchangeably depending on the available mask. The comparison between the
template meshes is shown in Fig. C.1.

2



Figure C.1. Template Meshes.

C.2. Initialization

Mesh Initialization. As discussed in the main paper, before we start the optimization process, the hand pose and shape need
to be initialized. Therefore, we employ the pose estimator METRO [8] which estimates the camera translations with fixed
intrinsic parameters. We average the camera translations across all frames from the same sequence and fix them throughout
the optimization. However, because the METRO model predicts the mesh vertex locations directly, the predicted meshes
cannot be used for animation. To this end, we fit the hand template to METRO predictions by optimizing pose parameters γ
and shape parameters β using the following energy term E:

E =

V∑
v

‖vt − vp‖2

where Vt =M(γ, β)

where V is the set of MANO vertices in the template, and vp is the predicted location from METRO. Note that this optimiza-
tion is possible because METRO prediction and MANO model share the same template mesh. To avoid local minima during
fitting, we re-run the optimization process if the mean distance between METRO vertices and the optimized vertices is more
than 1 cm.

C.3. Optimization

From the initialization, we first optimize using only the geometry term Egeo to reconstruct the hand surface. We then
jointly optimize both the geometry and the appearance with the addition of Eapp. Once the geometry is stable in the joint
optimization, we then freeze the geometry optimization and continue to refine the appearance with only Eapp. Concretely,
to obtain the personalized hand pose, shape, and appearance, we employ a multi-stage optimization scheme as follows: (1)
geometry optimization, (2) both geometry and appearance optimization, and (3) only appearance optimization. We use the
Adam [5] for both Egeo and Eapp optimization. In total, the optimization takes an average of 80 minutes on a single Nvidia
3090 GPU.

Geometry Optimization. Given the masked images, we first optimize the pose γ, shape β, vertex displacements D, transla-
tions, and rotations, with respect to the geometry objective Egeo. In this stage, only the geometry energy term Egeo is used.
loss is used. We optimize using a learning rate of 1e−3 for 100 epochs.

Joint Optimization. After the coarse geometry alignment, we begin the appearance optimization with respect to the appear-
ance objective Eapp. In this stage, both the geometry objective Egeo and appearance objective Eapp are optimized together
for 50 epochs to correct geometry misalignment using appearance information on the input images. We use the learning rate
of 1e−2 for the appearance optimizer.
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Appearance Optimization. Lastly, we refine the appearance with only the appearance objective Eapp for another 50 epochs.
This step focuses on retrieving fine texture details which are difficult to optimize while the geometry is still changing.

Appearance Regularization Terms. To regularize the reconstruction of the UV texture and normal map, we define the
appearance regularization term in the UV space. Let T be an albedo map and G be a normal map, and I is a pixel in the UV
space:

Eapp reg = Et reg + En reg, (1)

Et reg =
∑
I

1

3
‖T (I)− T (I + ε1)‖1 , (2)

En reg =
∑
I

1

3
(‖G(I)− G(I + ε2)‖1 + ‖G(I)− uz‖

2
2), (3)

where ε1, ε2 are random pixel-space displacements sampled from a Gaussian with a standard deviation of 2, uz is a unit
vector pointing along z direction. Both terms ensure a smooth transition in the UV space, while the En reg encourages the
normal to be close to the surface normal.

Losses. The weights for each energy term are as defined in the table C.1:

Esil 7.0
Einit 10.0
Everts 2.0
Elap 4.0
Enorm 0.1
Earap 0.2
Ephoto 1.0
Evgg 1.0
Et reg 2.0
En reg 0.5

Table C.1. Weights for each energy term.

C.4. Lighting Contribution

As we assume that the hand surface is largely non-reflective, we ignore the specular contribution in our lighting formula-
tion. In our method, the color at each surface point is only affected by the ambient contribution, which dictates how bright
each point is regardless of its position, and the diffuse contribution, which determines the brightness based on the angle
between the point normal and the light direction. Diffuse lighting is also affected by the visibility term V that determines
direct occlusion with respect to the light source. A higher ambient contribution will make the shadow less visible and the
brightness more uniform. Figure C.2 shows the decomposition of each component in our pipeline. We show the differences
between the final albedo after optimizing with and without considering the visibility term V in Fig. C.3.

In our experiments, we empirically disable the self-shadowing term of HARP when we compare it with the baselines on
the first part of our hand appearance dataset, where there is no hard shadow and dominant light source. In other experiments,
the self-shadowing term is enabled and the ratio between the ambient and diffuse contributions is optimized together with
other parameters as described in the main paper.

D. Ablation
In this section, we discuss the importance and effect of each energy term in our method.

Appearance. We observe that, without the perceptual term EV GG, the resulting texture looks overly smooth as the colors
are averaged over the pixels that map to a slightly different point on the hand surface. However, without the photometric L1
term Ephoto, the result might contain noisy artifacts. The qualitative comparison is shown in Table D.1.

Geometry. Figure D.1 shows the qualitative comparison between the results from optimizing without a specific shape
regularization term. The as-rigid-as-possible termEarap prevents sharp edges when the mesh is deformed to fit the silhouette.
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Figure C.2. Decomposition of color contributions in our rendering pipeline.

Figure C.3. Comparison between optimization without and with self-shadowing effect. Without considering self-shadow, the input
images cannot be faithfully reconstructed by the renderer.

L1 ↓ LPIPS ↓ MS-SSIM ↑
w/o Ephoto 0.0171 0.0693 0.906
w/o EV GG 0.0164 0.0842 0.914
HARP 0.0168 0.0712 0.908

Table D.1. Ablation study on the appearance losses.

Figure D.1. Qualitative comparison between optimization results using different geometry regularization terms.

The vertex displacement term Everts ensures that the deviation from the shape space of the underlining parametric model
is minimal, such that the blendshape from the parametric model is still useful when the mesh is reposed. The other terms
including the normal consistency regularization Enorm and the Laplacian regularization Elap encourage the surface to be
more smooth and less bumpy. We note that the effect of each term is less noticeable in the rendered image evaluation as the
optimization can counteract the geometry change with a texture change. However, the regularization terms are necessary to
ensure mesh integrity for any downstream application.
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Figure E.1. Qualitative results of out-of-distribution hands with different lighting conditions. Our method can accurately capture
diverse appearances. The first two rows are captured in different lighting conditions with a different number of ceiling lights. The last three
rows are synthetic data rendered with three light sources and ambient light. Please zoom in for details.

E. Discussion
E.1. Additional Results

We show additional results in Fig. E.1 that demonstrate our method’s ability to capture diverse patterns such as tattoos,
nail colors, and scars faithfully on diverse skin colors.

E.2. Pose-dependent surface deformation

As our model is built on top of MANO, it has the pose-dependent surface deformation modeled by MANO pose blend
shapes. Our displacement map is designed to capture detailed, personalized hand shapes that cannot be represented by
MANO. We found that conditioning the displacement map on poses results in two different sets of parameters governing the
same surface deformation which could be difficult to optimize.

E.3. Failure Cases

In this section, we discuss the noticeable failure cases of our system. The examples are shown in Fig. E.2. First, HARP
mainly uses the silhouette from a monocular view to guide the personalized geometry. As a consequence, it is crucial that
the images and the masks provide sufficient information about the shape. When the data is not sufficient, the hand mesh
can deform in an unexpected way to satisfy the mask. We show this failure case in Fig. E.2(a) where some vertices extend
perpendicular to the palm as there are not enough side view images. Note that the optimization can always compensate for
the bumpy geometry with a change in the texture in order to replicate the input images. A potential solution to this problem
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Figure E.2. Failure cases and limitations. (a) With limited pixel information, the geometry could deform in an undesirable way as it uses
mainly the silhouette for supervision. (b) HARP pose optimization is sensitive to initialization and could stuck in local minima when the
initialization and foreground mask do not align. In this case, a large immediate increase in silhouette loss will prevent the optimizer from
leaving the minima.

is to vary the geometry regularization terms based on the characteristic of the hand in the video. Second, as our method
relies on the initialization from a hand pose estimator and the foreground mask, the final pose and the appearance quality are
influenced by the performance of the pose estimator and the segmentation tool. In some cases, the pose might be stuck in a
local minimum due to the initialization (Fig. E.2(b)).

E.4. Pose Refinement via Appearance Optimization

In the main paper, we show that by optimizing the hand pose parameters with HARP, we can refine the estimated hand
pose to better fit the image, which can lead to a slight improvement in the Procrustes-aligned hand pose error. Our intuition
is that if the hand’s appearance is known in advance, it should be possible to leverage pixel color optimization to obtain
more accurate poses. We compare the results between (1) the initial estimation, (2) HARP with only geometry term Egeo

(HARP-sil), (3) normal HARP (HARP-full), and (4) HARP with known appearance (HARP-known).
Case (2) is a known task that is often associated with a differentiable renderer [10,15] where the silhouette is used to optimize
for an object pose. However, we observe that for a highly articulated object such as a hand, using silhouette alone might not
be enough to obtain the correct pose. We visualize such scenarios in Fig. E.3.
Case (3) leverages only the appearance consistency within the optimized video. As both the poses and the appearance are
optimized together, it is possible to obtain the colors that are associated with wrong poses.
Case (4) leverages the appearance that is obtained from possibly easier hand motion. All of the hand parameters, except for
hand poses, are given as initialization. Those parameters, including the appearance, are obtained from running HARP on
another sequence. The given parameters are frozen during the optimization and only the hand poses are updated. All loss
terms are the same as normal HARP.

We demonstrate that such pose refinement is possible if the appearance consistency is leveraged in the optimization (both
case 3 and case 4). We acknowledge that our synthetic dataset is small relative to the recent hand pose dataset such as
InterHand2.6M [12] However, due to the lack of ground truth with accurate 3D annotations, we could only perform the
experiment on our synthetic dataset where we have perfectly accurate ground truth. The InterHand2.6M dataset [12],
which offers the hand motions that are the closest to our target use case, reported the MANO ground truth fitting error at
around 5 mm [11]. On the other hand, the Procrustes-aligned MANO vertex error of the METRO [8] prediction on our
selected sequence is at 6 mm. Any quantitative improvement below 1 mm would be statistically meaningless as it is an order
of magnitude smaller than the supposed ground truth error. Therefore, we do not report the pose refinement on this dataset
and other existing datasets due to similar reasons.

Future work. We foresee that the ideal scenario for this use case would be when a user starts using AR/VR equipment, they
do a hand-flipping motion to provide a hand appearance. And with that appearance, the pose estimation can be improved.
Practically, however, the optimization speed would still prevent real-time pose refinement. As such improving the speed and
pose estimation error which would be interesting to explore in future work.
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Figure E.3. Example cases where the hand mask is not informative enough for determining the hand pose.
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