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This supplemental material provides details on the

depth-of-field analysis of the monocentric lens introduced

in Section 4, details of the linear calibration of the mirror

distances in Section 5, details of the triangulation with the

teleidoscopic system we used for estimating the 3D shape

in Section 6, and also additional results of microscale 3D

shape recovery.

1. Monocentric Lens (Section 4)

Monocentric lens is a spherical and homogeneous opti-

cal lens which often has a high refraction index. As shown

in Fig. 1, rays from a single point (blue) towards a mono-

centric lens diverge at a wide angle on the other side. This

indicates that a perspective camera located at the point can

use the monocentric lens as a conversion lens to obtain

a wider field-of-view. It approximately has a short focal

length as a thick lens, however, it does not have a single fo-

cus strictly [1], as illustrated as the caustic by the red lines

in Fig. 1. In order to model such rays efficiently, we first

model the ray-pixel mapping through the monocentric lens.

1.1. Depth-of-Field of Thin Lens Camera

Ideally all the incident light rays from a subject point

to the lens focus at a common point. As shown in Fig. 2,

suppose that a point osc is focused on the image plane of a

camera C through its lens L. Then the following thin lens

formula for paraxial ray holds:

1

sc
+

1

tc
=

1

fc
. (1)

The depth-of-field is defined as the backprojection of

the permissive circle-of-confusion centered at the focused

point. If the subject distance sc is not long enough, the near

and the far depth-of-focus ϵN and ϵF are given by aperture

size Φ and tc as

ϵN =
δtc

Φ− δ
=

δscfc

(Φ− δ)(sc − fc)
, (2)

ϵF =
δtc

Φ+ δ
=

δscfc

(Φ + δ)(sc − fc)
.

012345678

-4

-3

-2

-1

0

1

2

3

4

monocentric lens

Figure 1. Refraction by Monocentric Lens. The blue, green, and

red lines indicate incident, refracted, and emergent rays through a

monocentric lens respectively. Notice that the emergent rays have

a wider field-of-view than that of the incident rays, while they form

a caustic.
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Figure 2. Depth-of-Field of Thin Lens Camera with Aperture.

The red and blue lines show the backprojection of the permissi-

ble circle-of-confusion δ through the aperture Φ. DF and DN

denote the near and the far depth-of-fields.

The near and the far depth-of-field DN and DF corre-
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Figure 3. Light Paths through the Monocentric Lens.

sponding to ϵN and ϵF are then obtained by Eq. (1) as

DN =
ϵN (sc − fc)

2

f2
c + ϵN (sc − fc)

,

DF =
ϵF (sc − fc)

2

f2
c − ϵF (sc − fc)

.

(3)

As a result, DN and DF are described as follows:

DN =
δscfc(sc − fc)

(Φ− δ)f2
c + δscfc

,

DF =
δscfc(sc − fc)

(Φ + δ)f2
c − δscfc

.

(4)

Equation (4) indicates that the depth-of-field of camera

C depends on the subject distance sc, the aperture size Φ,

and the permissible circle-of-confusion δ.

1.2. Light Paths through the Monocentric Lens

Fig. 3 illustrates the backprojection of the permissible

circle-of-confusion through a thin lens and a monocentric

camera. The light pass through the lens center o0. The key

point is that an on-focus scene point at the distance sD is

also on-focus at the distance sc between the two lenses.

2. Mirror Distance Calibration (Section 5)

Once the mirror normals are estimated, we can utilize the

kaleidoscopic triangulation [2] to obtain linear constraints

on the mirror distances di. That is,

(a(0)
v × (Hia

(i)
v ))⊤(o0 − ti) = 0 ,

⇔ (a(0)
v × (Hia

(i)
v ))⊤(0− 2dini) = 0 .

(5)

While this equation itself does not contribute to solve for

di, the same constraint holds also for the first and the second

reflections such as Ci and Cij as

(a(0)
v × (Hija

(ij)
v ))⊤(0− tij) = 0

⇔ (a(0)
v × (HjHia

(ij)
v ))⊤(0− 2djnj − 2Hjdini) = 0 .

(6)

By integrating Eq. (6) for ij = {12, 13, 21, 23, 31, 32}
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Figure 4. Teleidoscopic Triangulation. A scene point pw is calcu-

lated as the intersection of the rays from ofq and o
′

fq
.

as a set of linear equations of di (i = 1, 2, 3), we have:
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(7)

and we can obtain d1, d2, d3 linearly up to scale.

3. Teleidoscopic Triangulation

Once the teleidoscopic imaging system parameters are

calibrated, a scene point can be linearly triangulated in a

DLT manner from its teleidoscopic projections as follows.

As shown in Fig. 4, suppose a 3D point pw is projected to

pp in the real camera Cn and also to p′

p in a mirrored camera

C ′

n whose relative pose is Rnn′ , tnn′ . Since our ray-pixel

camera model provides the direction vo = (xvo
, yvo

, zvo
)⊤

and the virtual focal length to ofq = (0, fq)
⊤ directly, the

collinearity constraint on ℓo and pw = (xpw
, ypw

, zpw
)⊤

can be expressed simply as

vo × (pw − ofq ) = 0,

⇔

(

1 0 −xvo

zvo

0 1 −yvo

zvo

)





xpw

ypw
zpw



 = −
fq

zvo

(

xvo

yvo

)

,

⇔ A0pw = b0.

(8)

Similarly for C ′

v1, we have

A1(R1pw + t1) = b1,

⇔ (A1R1)pw = b1 −A1t1.
(9)

By combining these collinearity constraints, solving the

linear system below estimates the position of pw:
(

A0

A1R1

)

pw =

(

b0
b1 −A1t1

)

. (10)
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Figure 5. Additional results of 3D Shape Estimation. (a) Room-

light appearance. (b) Teleidoscopic image. (c) Recovered 3D sur-

face as point clouds with texture from two different viewpoints.

In the case of three or more viewpoints, depending on the

number of the cameras, we can add equations in the same

form into this system for triangulation.

4. Additional results

Fig. 5 shows the results of our teleidoscopic 3D recon-

struction of various objects (a tiny seashell, and toys of a

bird and a human). These results prove that our system re-

alizes a close-up and surround-view capturing successfully.
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