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Figure 11. Wide range of editing types. Additional 1024 x 1024-pixel pairs of original (left) and edited (right) images using our
method (with target texts). Editing types include posture changes, composition changes, multiple object editing, object additions, object
replacements, style changes, and color changes.
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Figure 12. Smooth interpolation. Additional results for smooth interpolation between the input image and the edited image using Imagic

with Stable Diffusion (See animated GIFs in the supplementary material zip file).
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Figure 13. Imagen vs Stable Diffusion. Imagic’s formulation is agnostic to the diffusion model choice. We show multiple examples of the
same requested edit applied with either Imagen or Stable Diffusion.

B. Ablation Study

In the paper, we performed ablation studies on model fine-tuning and interpolation intensity. Here we present a dis-
cussion on the necessity of text embedding optimization, and additional ablation studies on the number of text embedding
optimization steps and our method’s sensitivity to varying random seeds.

Text embedding optimization Our method consists of three main stages: text embedding optimization, model fine-tuning,
and interpolation. In the paper, we tested the value that the latter two stages add to our method. For the final two stages to
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Figure 14. Ablation for number of embedding optimization steps. Editing results for varying n and number of text embedding opti-
mization steps, with and without fine-tuning (fixed seed).

work well, the first one needs to provide two text embeddings to interpolate between: a “target” embedding and a “source”
embedding. Naturally, one might be inclined to ask the user for both a target text describing the desired edit, and a source text
describing the input image, which could theoretically replace the text embedding optimization stage. However, besides the
additional required user input, this option may be rendered impractical, depending on the architecture of the text embedding
model. For instance, Imagen [53] uses the TS language model [46]. This model outputs a text embedding whose length
depends on the number of tokens in the text, requiring the two embeddings to be of the same length to enable interpolation.
It is highly impractical to request the user to provide that, especially since sentences may have a different number of tokens
even if they have the same number of words (depending on the tokenizer used). Therefore, we opt not to test this option,
and defer the pursuit of cleverer alternatives to future work. Moreover, this dependence on the number of tokens prevents
optimizing the model once per image, and then editing it for any text prompt.

Number of text embedding optimization steps We evaluate the effect of the number of text embedding optimization steps
on our editing results, both with and without model fine-tuning. We optimize the text embedding for 10, 100, and 1000 steps,
then fine-tune the 64 x 64 diffusion model for 1500 steps separately on each optimized embedding. We fix the same random
seed and assess the editing results for  ranging from 0 to 1. From the visual results in Figure 14, we observe that a 10-step
optimization remains significantly close to the initial target text embedding, thereby retaining the same semantics in the pre-
trained model, and imposing the reconstruction of the input image on the entire interpolation range in the fine-tuned model.
Conversely, optimizing for 100 steps leads to an embedding that captures the basic essence of the input image, allowing for
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Figure 15. Different seeds. Varying n values and different seeds produce different results for the same input.

meaningful interpolation. However, the embedding does not completely recover the image, and thus the interpolation fails
to apply the requested edit in the pre-trained model. Fine-tuning the model leads to an improved image reconstruction at
n = 0, and enables the intermediate n values to match both the target text and the input image. Optimizing for 1000 steps
enhances the pre-trained model performance slightly, but offers no discernible improvement after fine-tuning, sometimes
even degrading it, in addition to incurring an added runtime cost. Therefore, we opt to apply our method using 100 text
embedding optimization steps and 1500 model fine-tuning steps for all examples shown in the paper.

Different seeds Since our method utilizes a probabilistic generative model, different random seeds incur different results for
the same input, as demonstrated in Figure 4. In Figure 15, we assess the effect of varying 7 values for different random seeds
on the same input. We notice that different seeds incur viable edited images at different 7 thresholds, obtaining different
results. For example, the first tested seed in Figure 15 first shows an edit at = 0.8, whereas the second one does so at
n = 0.7. As for the third one, the image undergoes a significant unwanted change (the dog looks to the right instead of left) at
a lower ) than when the edit is applied (the dog jumps). For some image-text inputs, we see behavior similar to the third seed
in all of the 5 random seeds that we test. We consider these as failure cases and show some of them in Figure 10. Different
target text prompts with similar meaning may circumvent these issues, since our optimization process is initialized with the
target text embedding. We do not explore this option as it would compromise the intuitiveness of our method.

C. User Study Details

We perform an extensive human perceptual evaluation study with TEdBench (Textual Editing Benchmark), a novel bench-
mark containing 100 image-text input pairs for the complex non-rigid image editing task. The study was conducted using
Amazon Mechanical Turk, to ensure unbiased evaluator opinions. For each evaluator, we show a randomly chosen subset of
20 images, including one image-text input pair that is shown twice. We discard all answers given by raters who answer the
duplicate question differently, as they may not have paid close attention to the images. Human evaluators were shown an in-
put image and a target text, and were asked to choose between two editing results: A random result from one of SDEdit [38],
DDIB [62], or Text2LIVE [&], and our result, randomly ordered (left and right). Users were asked to choose between the
left result and the right one, akin to the standard practice of Two-Alternative Forced Choice (2AFC) [8, 35,42]. A sample
screenshot of the screen shown to evaluators is provided in Figure 16. We collected 3030 answers for the comparison to
SDEdit, 3131 for DDIB, and 3052 for Text2LIVE, totalling 9213 user answers.

For fairness, we apply SDEdit, Text2LIVE, and Imagic using a single fixed random seed, while DDIB is deterministic and
thus unaffected by randomness. In Imagic, we choose the hyperparameter 7 that applies the desired edit while preserving
a maximal amount of details from the original image. We choose SDEdit’s intermediate diffusion timestep using the same
goal. SDEdit was applied using the same Imagen model that we used, keeping its original hyperparameters. We also apply
DDIB using Imagen, with a deterministic DDIM sampler, an encoder classifier-free guidance weight of 1, and a decoder
classifier-free guidance weight ranging from 1 to 5 to control the editing intensity and choose the best result. Text2LIVE



In each tab, we have two images editted from the same original image using different methods.
Please use the radio buttons above to choose the one better edited from the original image. Here are some guidelines for good image editing:

* The edited image looks more realistic,
* The edited image matches with the TEXT PROMPT better, while preserving the details from the original image.

Note that you must select one of these edited images in each tab before you submit. There are 20 tabs in total.

QO Leftis better Original Image O Right is better
TEXT PROMPT: a photo of a peeled
banana.

It would be great if you could check both editing carefully, as your answer matters a lot to us! Thank you so much!

Figure 16. User study screenshot. An example screenshot of a question shown to participants in our human perceptual evaluation study.

is applied using its default provided hyperparameters. Both DDIB and Text2LIVE had access to additional auxiliary texts
describing the original image. The same hyperparameter settings were used in our qualitative comparisons as well. It is worth
noting that SDEdit, DDIB, and Text2LIVE were all designed without complex non-rigid edits that preserve the remainder of
the image in mind. Imagic is the first method to successfully target and apply such edits.

Our results show a strong user preference towards Imagic, with all comparisons to baselines showing a preference rate
of more than 70%. We hope that TEdBench enables comparisons in text-based real image editing in the future, and serves
as a benchmark evaluation set for future work on complex non-rigid image editing. To that end, we provide the full set of
TEdBench images and target texts along with results for all the tested methods at the following URL: https://github.
com/imagic—editing/imagic—editing.github.io/tree/main/tedbench/.
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