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In this supplementary material, we first conduct ad-
ditional experiment analysis of our Temporal KNN-patch
Loss (TK-Loss) in Section 1. Then, we present visualiza-
tion of temporal matching correspondence and compute its
approximate accuracy in Section 2. We further show more
qualitative VIS results analysis (including failure cases) in
Section 3. Finally, we provide MaskFreeVIS algorithm
pseudocode and more implementation details in Section 4.
Please refer to our project page for extensive MaskFreeVIS
video results.

1. Supplementary Experiments
Patch vs. Pixel in TK-Loss Extending Table 4 in the paper,
in Table 1, we further compare the results of image patch vs.
single pixels under different max K values during temporal
matching. The one-to-K correspondence produces gains in
both pixel and patch matching manners, while the improve-
ment on patch matching is much more obvious.
Table 1. Patch vs. Pixel in one-to-K patch correspondence on
YouTube-VIS 2019.

K Pixel Patch AP AP50 AP75 AR1 AR10

1 ✓ 39.1 64.8 41.7 39.8 47.8
1 ✓ 40.8 65.8 44.1 40.3 48.9

3 ✓ 39.8 65.9 40.6 39.6 48.2
3 ✓ 41.9 66.9 45.1 41.9 50.3

5 ✓ 40.1 65.2 42.2 40.0 48.2
5 ✓ 42.5 66.8 45.7 41.2 51.2

7 ✓ 39.6 64.9 41.0 39.8 48.5
7 ✓ 42.3 67.1 44.6 40.6 50.7

Influence of Tube Length During model training, we sam-
ple a temporal tube from the video. We study the influence
of the sampled tube lengths in Table 2, and observe that
the performing of MaskFreeVIS saturates at temporal tube
length 5. For even longer temporal tube, different from [5],
the temporal correlation between the beginning frame and
ending frame (two temporally most distant frame) is weak
to find sufficient patch correspondence.
Additional Results on Various Amount of YTVIS Data
For experiments in Figure 6 of the paper, we sample differ-
ent portions (in percents) of YTVIS data by uniformly sam-

Table 2. Results of varying Tube Length during training for TK-
Loss on YouTube-VIS 2019. Tube length 1 denotes model training
with only spatial losses in BoxInst [7].

Tube Length AP AP50 AP75 AR1 AR10

1 38.3 65.4 38.5 38.0 47.4
3 42.1 66.4 44.9 41.0 50.8
5 42.5 66.8 45.7 41.2 51.2
7 42.5 67.5 45.2 41.3 51.1
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Figure 1. Results on YTVIS 2019 val with various percentages
of the YTVIS training data, by directly sampling different num-
bers of videos from the YTVIS training set. Baseline denotes
Mask2Former [1] trained with GT video boxes using BoxInst [7],
while Oracle denotes the fully supervised Mask2Former trained
with GT video masks.

pling frames per video. In Figure 1, we experiment with
another video sampling strategy by directly sampling dif-
ferent numbers of videos from the YTVIS training set. Our
MaskFreeVIS consistently attains large improvements (over
3.5 mask AP) over the baseline in both the COCO mask and
box pretraining settings, with performance on par with the
oracle Mask2Former in data-efficient settings.
Image-based Pretraining Results on COCO In Table 3,
we report the performance on COCO of image-pretrained
Mask2Former networks used as initial weights for our ap-
proach. The mask-free version employs the spatial losses
of BoxInst [7]. We also show the corresponding VIS results
on YTVIS 2019 by taking these image-pretrained models
as initialization for our approach. Compared to the fully-
supervised Mask2Former on COCO, the box-training pro-
cess eliminates the image masks usage and obtaining a
lower performance (over 10.0 AP) in image mask AP on
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Frame 𝑡 Frame 𝑡 + 1
Figure 2. Visualization of the temporal correspondence in TK-Loss. We randomly sample 100 patch center points from Frame t, and draw
its temporally matched patch center points in Frame t+1. Matches are shown in the same color, and should have consistent instance mask
label. Taking patch center points near the left leg of the man (inside the red box, 1st row in Frame t) as an example, the matches in Frame
t+1 consistently belong to the same foreground (leg) / background (grass) region. Best viewed in color.

COCO. However, even initialized from this low-performing
image-pretrained models, our MaskFreeVIS using the pro-
posed TK-Loss still greatly reduces the gap between fully-
supervised and weakly-supervised VIS models as shown in
the rightmost column of the Table 3.

Table 3. Results of image-based pretrained Mask2Former
(M2F) [2] on COCO val and the corresponding video results on
YTVIS 2019 by taking the image-pretrained one as initialization.
M2F + BoxInst is mask-free, which is used to initialize MaskFree-
VIS, while image-based M2F (Oracle) is to initialize video-based
M2F (Oracle). Oracle denotes training with GT image or video
masks.

Backbone Image Method Image AP VIS Method Video AP

R50 M2F + BoxInst 32.6 MaskFreeVIS 42.5
R50 M2F (Oracle) 43.7 M2F (Oracle) 46.4

R101 M2F + BoxInst 34.5 MaskFreeVIS 45.8
R101 M2F (Oracle) 44.2 M2F (Oracle) 49.2

SwinL M2F + BoxInst 40.3 MaskFreeVIS 54.3
SwinL M2F (Oracle) 50.1 M2F (Oracle) 60.4

Fully Mask-free Results on OVIS Extending from Ta-
ble 12 of the paper, we further present the results of Mask-
FreeVIS on OVIS using COCO box pretraining as initial-
ization in Table 4. Our MaskFreeVIS consistently improves

Table 4. Full results of our MaskFreeVIS on OVIS [6] using R50.
I: using COCO mask pretrained model as initialization. V: using
YTVIS video masks during training.

Method Mask AP AP50 AP75 AR1 AR10

ann.

Fully-supervised:
VMT [4] I+V 16.9 36.4 13.7 10.4 22.7
VITA [3] I+V 19.6 41.2 17.4 11.7 26.0

Video Mask-free:
VITA [3] + BoxInst [7] I 12.1 28.3 10.2 8.8 17.9
VITA [3] + MaskFreeVIS I 15.7↑3.6 35.1 13.1 10.1 20.4

Mask-free:
VITA [3] + BoxInst [7] - 10.3 27.2 8.4 7.3 16.2
VITA [3] + MaskFreeVIS - 13.5↑3.2 32.7 10.6 8.8 18.5

the baseline from 10.3 to 13.5 mask AP without using any
masks.

2. More analysis on Temporal Correspondence

Visualization on Temporal Correspondence We visual-
ize the dense temporal correspondence matching for TK-
Loss computation in Figure 2. For better visualization, we
randomly sample 100 patch center points from Frame t, and
plots their respective patch correspondences in Frame t+1
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Figure 3. Qualitative video instance segmentation results comparison between Mask2Former using Spatial Pairwise loss of BoxInst [7]
(Baseline), our proposed TK-Loss (Ours), and Mask2Former (Oracle) trained with GT video and image masks.

using the same color. We observe robust one-to-K patch
matching results, especially for the regions near the left leg
of the man (inside the red box) and the white frisbee.

Correspondence Accuracy To further analyze the accu-
racy rate for the temporal correspondence, since there is no
matching ground truth, we adopt the instance masks labels
as an approximate measure. We randomly take 10% of the
videos from the YTVIS 2019 train set, and split them to
5-frame tube. Following the cyclic connection manner, we
compute whether two matched patch center points belong-
ing to the same instance mask label. The average matching

accuracy per image pair is 95.7%, where we observe the
wrong matches are mainly due to the overlapping objects
with similar local patch patterns.

3. More Qualitative Comparisons
In Figure 3, we provide more qualitative results com-

parison among Baseline (using spatial losses of Box-
Inst [7]), Ours (using the proposed TK-Loss), and Oracle
Mask2Former (trained with GT video and image masks).
Compared to the Baseline, the predicted masks by our ap-
proach is more temporally coherent and accurate, even out-
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Figure 4. One typical failure case of our MaskFreeVIS. The neighboring hand watch and shelf belong to the same black color, and
continuously closing to each other with no sufficient motion information for delineating these two objects.

performing the oracle results in some cases (such as the first
row of Figure 3). We also identify one typical failure case
of our MaskFreeVIS in Figure 4, where the neighboring
hand watch and shelf are in almost the same black color,
and continuously closing to each other with no sufficient
motion information for distinction. We observe even the
oracle model trained with GT video masks sometimes fail
in correctly delineating these two objects (last row of Fig-
ure 4). Please refer to the attached video file on our project
page for more qualitative results of our MaskFreeVIS.

4. More Implementation Details
Algorithm Pseudocode We outline the pseudocode for
computing Temporal KNN-patch Loss in Algorithm 1,
where the execution code does not exceed 15 lines. This
further demonstrates the simplicity, beauty and lightness of
our TK-Loss without any learnable model parameters.
More implementation details Before computing temporal
image patch affinities, we first convert the input image from
RGB color space to CIE Lab color space for better differ-
entiating color differences. We set dilation rate to 3 when
performing temporal patch searching. For the loss balance
weights in Equation 7 and Equation 8 of the paper, we set
λpair to 1.0 and λtemp to 0.1. We follow the same training
setting and schedule of the baseline methods when integrat-
ing our TK-Loss with Mask2Former [1], SeqFormer [8],
VITA [3] and Unicorn [9] for video instance segmenta-
tion training. When performing mask-free pre-training on
COCO with spatial losses of BoxInst, we keep the training
details of the integrated method unchanged. When integrat-
ing with Mask2Former using ResNet-50 and batch size 16,
the MaskFreeVIS training on YTVIS 2019 can be finished
in around 4.0 hours with 8 Titan RTX. When jointly training
with COCO labels, it needs around 2 days.

Algorithm 1 Temporal KNN-patch Loss.

Input: Tube length T , mask predictions M , frame width
W , height H , radius R, patch distance threshold D.

Output: TK-Loss Ltemp
1: # topK denotes selecting top K patch candidates with the maximum

patch similarities computed using L2 distance Dis(·, ·)
2: # Lcons denotes mask consistency loss (Equation 3 of the paper)
3: Ltemp ← 0.
4: for t = 1, . . . , T do
5: t̂← (t+ 1)%T

6: Lt→t̂
f ← 0.

7: for j = 1, . . . ,H ×W do
8: # 1) Patch Candidate Extraction:
9: St→t̂

pj
← {p̂i}i, where ∥pj − p̂i∥ ≤ R

10: # 2) Temporal KNN-Matching:
11: St→t̂

pj
← topK(St→t̂

pj
), where Dis(pj , p̂i) ≤ D

12: # 3) Consistency Loss
13: Lt→t̂

f ← Lt→t̂
f +

∑
p̂i∈St→t̂

pj

Lcons(M
t
pj
,M t̂

p̂i
)

14: end for
15: # 4) Cyclic Connection
16: Ltemp ← Ltemp + Lt→t̂

f /(H ×W )
17: end for
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