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Appendices
A. Optimization Problem of Neural Preset

Here we analyze (1) how to derive our training con-
straints from the fundamental color style transfer objective
and (2) why performing color mapping via the proposed
DNCM is necessary for our training strategy.

Consider the objective of color style transfer. Given an
input image Ic and a style image Is that have different con-
tent and color styles, we aim to learn a model H to transfer
the color style of Is to Ic by minimizing the objective:

min EIc,Is,Gs∼pI

[
|Gs −H(Ic, Is)|

]
, (1)

where pI represents the distribution of images, and Gs is the
ground truth stylized image that has the same image content
as Ic and the consistent color style as Is.

The idea of our two-stage pipeline is to divide H into
two sub-functions, i.e., two stages, to remove the original
image color style of Ic before applying a new one, as:

min EIc,Is,Gs∼pI

[
|Gs − S2(S1(Ic), Is)|

]
, (2)

where S1 and S2 denote the sub-functions corresponding to
the two stages of our pipeline. As Gs is typically unavail-
able in practice, we generate pseudo input and style images
to approximate the above optimization problem. Specifi-
cally, we add random color perturbations (e.g., LUTs or fil-
ters) to each image I to create a set of n images {I1, . . . , In}
with the same content but different color styles. We denote
indexes by i, j ∈ {0, . . . , n} in the following context. Thus,
Eq. 2 can be approximated with perturbed images, as:

min EI∼pI

[ n∑
i

n∑
j

∣∣∣Ij − S2(S1(Ii), Ij)
∣∣∣ ]. (3)

Given any fixed S1, the optimal S∗
2 should satisfy:

Ij = S∗
2 (S1(Ij), Ij) = S∗

2 (S1(Ii), Ij). (4)

Eq. 4 reveals a possible optimization issue of Eq. 3 – if
we model S1 and S2 by end-to-end CNNs like autoen-
coders [33], optimizing only Eq. 3 via gradient-based al-
gorithms can easily make S1 and S2 converge to a trivial

solution to satisfy Eq. 4: S∗
2 becomes an identity function

w.r.t. Ij , while S1 can be any function. Formally, for a real
input and style image pair Ic and Is with different content,
the possible trivial solution is:

Is = S∗
2 (ϕ, Is), ϕ := S1(Ic), (5)

where S∗
2 always output Is directly and ignore another in-

put ϕ. Such a solution is undesired because the color style
transfer objective (Eq. 1) requires the output image have the
same content with Ic.

To overcome the above problem, modeling S1 and S2 via
DNCM instead of end-to-end CNNs is necessary. DNCM
inputs the color style parameters E(̃Ij) rather than the im-
age Ij . Since the dimensions of E(̃Ij) is much lower than
Ij , it prevents S2 from being an identity function w.r.t. Ij
and forces S1 to be involved in computing the optimal solu-
tion. Specifically, we define:

S1(Ii) := nDNCM(Ii, E(̃Ii)),

S2(S1(Ii), Ij) := sDNCM(S1(Ii), E(̃Ij))).
(6)

The formulas/symbols in Eq. 6 are equivalent to those in
Sec. 3.2 of the paper. Benefited by DNCM, optimizing only
Eq. 3 is sufficient for preventing S1 and S2 from converging
to the trivial solution shown in Eq. 5. There are other possi-
ble approaches to avoid such a trivial solution without using
DNCM, e.g., modeling the optimization of our pipeline as a
bi-level optimization [28, 29] problem.

Let us review Eq. 4 by substituting in Eq. 6, it is obvious
that constraining S1(Ii) and S1(Ij) to be consistent will
make S∗

2 easier to obtain. Hence, we interpret Eq. 3 as a
constrained optimization problem:

min EI∼pI

[ n∑
i

n∑
j

∣∣∣Ij − S2(S1(Ii), Ij)
∣∣∣ ]

s.t.

n∑
i

n∑
j

∣∣∣S1(Ij)− S1(Ii)
∣∣∣ = 0.

(7)

By using Penalty or Augmented Largangian [14] methods,
Eq. 7 can be reformulated as an unconstrained optimization
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problem. For example, the Penalty method produces:

min EI∼pI
[Lrec + λLcon ],

Lrec :=

n∑
i

n∑
j

∣∣∣Ij − S2(S1(Ii), Ij)
∣∣∣,

Lcon :=

n∑
i

n∑
j

∣∣∣S1(Ij)− S1(Ii)
∣∣∣,

(8)

where λ is a penalty coefficient. If we set n = 2, this new
optimization objective is formally equivalent to our training
constraint defined in Sec. 3.3 of the paper.

B. Details of Our Improved Quantitative Metrics

Below we describe the implementation details of our im-
proved quantitative metrics for color style transfer.

Style Similarity Metric. We first build a dataset consists
of 700+ color style categories, each containing 6-10 im-
ages with the same color style retouched by human experts
(see Fig. 1). We then train a discriminator model D on this
dataset as our style similarity metric. Specifically, for an
image I in the dataset, we use Ip and In to denote a positive
sample from the same category as I and a negative sample
from any other category, respectively. We optimize D to
distinguish different color styles via minimizing the follow-
ing loss from LS-GAN [31]:

Ldis = ||D(I, Ip)− 1||2 + ||D(I, In)− 0||2. (9)

The trained D will output a score between [0, 1], which rep-
resents the style similarity between two input images. The
score tends to be 1 if the two input images have similar color
styles and 0 otherwise. The architecture of D is adapted
from [18]. We use the Adam [20] optimizer to train D for
120 epochs. The initial learning rate is 1e−4 and is multi-
plied by 0.1 after every 50 epochs.

Our metric, i.e., the trained D focuses more on com-
paring image color styles and ignores other irrelevant in-
formation, such as the photorealism of the image content.
Besides, D predicts the style similarity score based on not
only on the statistic of color values but also on image prop-
erties, e.g., whether the two images have the same global
contrast. To demonstrate that our newly proposed metric is
more meaningful than the Gram metric used by prior works,
we compare the style similarity predicted by our metric and
the previously used Gram metric in Fig. 2. Note that a lower
Gram value means a higher similarity. Gram < 5 usually
indicates very similar, while Gram > 8 indicates a huge
difference. We can see that both metrics work well if two
images have exactly the same (Fig. 2 (a)) or very different
(Fig. 2 (d)) content and color style. However, for two im-
ages with the same content but different color styles, the
Gram metric may consider they have similar color styles

Figure 1. Data Used to Train Our Color Style Discriminator.
We display some samples from the dataset. The four samples in
each column belong to the same color style category.

(b) Ours: 0.9157 / Gram: 8.0432(a) Ours: 0.9923 / Gram: 5.6609 

(c) Ours: 0.1453 / Gram: 4.7008 (d) Ours: 0.0637 / Gram: 13.3527

Figure 2. Predicted Style Similarity. The blue number below
each image pair is the style similarity (between [0, 1]) predicted by
our metric (i.e., the color style discriminator), and a higher value
means that the two images have more similar color styles. The red
number below each image pair is the style similarity (larger than
0) predicted by the Gram metric, and a lower value means that
the two images have more similar color styles. We compare two
metrics in four cases: (a) two images with the same content and
color style; (b) two images with different content but similar color
styles; (c) two images with the same content but different color
styles; (d) two image with different content and color styles.

(Fig. 2 (c)). Meanwhile, for two images with different con-
tent but similar color styles, the Gram metric may consider
they are different in color style (Fig. 2 (b)). Instead, our met-
ric gives reasonable results in these cases.

Content Similarity Metric. We test the edge detection
method HED [40] used by prior works [1, 26, 42], and we
observe that HED fails to detect fine edges and often pre-
dict inaccurate edges, leading to an unreliable content sim-
ilarity evaluation. To alleviate this problem, we suggest re-
placing HED with a state-of-the-art edge detection method
LDC [34] to provide more precise edges. Fig. 3 compares
the visual results of HED and LDC, which shows the advan-
tages of LDC. When computing the metric, we set the long
side of the HED/LDC input images to 2048 to preserve im-
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Figure 3. Predicted Edges for Content Similarity Calculation.
For a more precise quantitative evaluation of content similarity, we
replace HED [40] (used by prior works [1,26,42]) with LDC [34].
LDC can provide finer (see blue arrows) and more accurate edges
(see red arrows) than HED.

age textures. After extracting edges, we compute the SSIM
metric between them as the content similarity score of the
two input images.

C. More Results

C.1 Visual Results of Neural Preset

We provide more visual results in Fig. 6 and Fig. 8.

C.2 Video Stylization Results of Neural Preset

We show frames of video results in Fig. 4 and provide
videos in our project page. By creating nDNCM/sDNCM
from the first frame and using them to process subsequent
frames, Neural Preset can provide consistent results across
frames. In contrast, prior methods often cause flickering ar-
tifacts and post-processing like DVP [22] should be applied.

C.3 Stylize Various Images with the Same Color Style

Fig. 5 shows the results of applying the same color style
to different images through Neural Preset.

C.4 Comparison on User Study Results

In Fig. 7, we calculate the ratios of each method being
ranked as 1st Best, 2nd Best, and 3rd Best. Neural Preset is
selected as 1st Best (i.e., Top1) in 61.28% of cases, signif-
icantly surpassing 16.25% obtained by the second-ranked
WCT2. In addition, Neural Preset achieves a Top3 (i.e., (1st

+ 2nd + 3rd) Best) ratio of 93.02%.

Style Stylized Video Frames

Input Video Frames

Figure 4. Our Video Color Stylization Results. Neural Preset
provides consistent color style transfer results across video frames.

Figure 5. Our Image Stylization Results. Neural Preset can con-
vert images with diverse color styles to the same color style.

C.5 Comparison on Applied to Other Tasks

In Fig. 9, we provide visual results of our Neural Preset
(without fine-tuning) and other color style transfer meth-
ods on low-light image enhancement [24], underwater im-
age color correction [41], image dehazing [11], and image
harmonization [32]. Neural Preset outperforms other meth-
ods by a large margin. However, since our model is only
trained in a self-supervised manner and not fine-tuned on
task-specific datasets, it may fail on these tasks, as shown
and discussed in Fig. 10.



Figure 6. Image Color Style Transfer Results of Neural Preset. For each image pair, the left is the input image, while the right is our
stylized result. The reference style image is displayed in the top-left corner. Our method is robust when generalizing to different types of
images, e.g., illustrations, pixelated images, oil paintings (see the last row).
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Figure 7. Comparison on User Study Results. We display the ratios of each method being ranked as 1st, 2nd and 3rd Best. Our Neural
Preset is ranked as the Top1, Top2, and Top3 results over 61%, 78%, and 93% cases, respectively.

C.6 Comparison on CPU Inference Time

Table 1 shows that Neural Preset is much faster on CPU.
Remarkably, it takes only 0.686 seconds to process a 4K
image, but recent state-of-the-art methods either have the
out-of-memory issue or take about 1 minute for processing.

D. DNCM for Image Harmonization/Enhancement

Here we describe how to train DNCM with pairwise data
for image harmonization and image color enhancement.

DNCM for Image Harmonization. Extracting the fore-



Figure 8. Image Color Style Transfer Results of Neural Preset. For each image pair, the left is the input image, while the right is our
stylized result. The reference style image is displayed in the top-left corner. All samples we show here are from the test set provided by
Luan et al. [30]. Neural Preset works well on most cases (see the first three rows), except for cases similar to the ones we have discussed
in the limitations (see the last row).

Method
CPU Inference Time ↓

FHD
(1920 × 1080)

2K
(2560 × 1440)

4K
(3840 × 2160)

8K
(7680 × 4320)

PhotoWCT [26] 14.591 s 25.686 s OOM OOM
WCT2 [42] 24.204 s 42.669 s OOM OOM
PhotoNAS [1] 14.227 s 24.826 s OOM OOM
Deep Preset [15] 14.354 s 25.173 s 58.030 s OOM
PhotoWCT2 [3] 3.111 s 4.588 s OOM OOM
Ours 0.215 s 0.346 s 0.686 s 2.290 s

Table 1. Comparison on CPU Inference Time. Evaluations are conducted on an Intel i9-11900KF CPU with 32GB PC memory. All
models are in Float32 precision. “OOM” means having the out-of-memory issue.

ground from one image and compositing it onto a back-
ground image is a common operation in image editing.
In order to make the composite image more realistic, the
image harmonization task is introduced to remove the in-
consistent appearances between the foreground and the
background. Recently, many image harmonization meth-
ods [4–7,12,13,19,27,36] based on deep learning have been
proposed with notable successes.

Since image harmonization can be regarded as a color
mapping process from the background to the foreground in-
side an image, we attempt to solve it using the proposed
DNCM. We adapt DNCM to image harmonization with two
modifications. First, we downsample the composite image
I and the foreground mask M to obtain thumbnails Ĩ and
M̃, which are concatenated as the input of the encoder E.

Second, we only use DNCM to alter the color of foreground
pixels (marked by M) in I, i.e., all background pixels in I
are not changed.

We follow existing works to conduct experiments on the
iHarmony4 [6] benchmark. We evaluate the image har-
monization performance by MSE and PSNR. The encoder
E is set to EfficientNet-B0 [35], and the DNCM hyper-
parameter k is set to 16. With the training loss from Tsai
et al. [36], our model is optimized by the Adam [20] op-
timizer for 50 epochs. We set the learning rate to 3e−4

(with a batch size of 16) and multiply it by 0.1 after every
20 epochs. Table 2 compares our model with state-of-the-
art image harmonization methods. Without specific mod-
ules/constraints designed for the image harmonization task,
our model achieves top-level performance in terms of MSE



Figure 9. Applying Color Style Transfer Methods to Other Tasks without Fine-tuning. Our Neural Preset robustly generalizes to
other color mapping tasks and surpasses previous color style transfer methods by a large margin. The datasets we used are listed in the
Acknowledgments at the end of the paper.

and PSNR. Notably, our model outperforms other methods
in terms of inference time and memory footprint.

DNCM for Image Color Enhancement. Image color
enhancement aims to improve the visual quality of im-
ages captured in different scenes, such as underexposed or
overexposed scenes. Recently, deep learning based meth-

ods [10, 16, 37, 38, 43] have dominated this field. Since we
can formulate image color enhancement as a many-to-one
color mapping from diverse degraded domains (e.g., under-
exposed and overexposed domains) to an enhanced domain,
we experiment with applying DNCM to this task.

We set the DNCM hyper-parameter k to 24. We train
DNCM for 200 epochs using the Adam [20] optimizer



(a) Low-Light Image Enhancement (b) Underwater Image Correction

(c) Image Dehazing (d) Image Harmonization

Figure 10. Limitations of Applying Our Model to Other Tasks.
For each image pair, the left is the input image while the right is
the output image. The top-left corner of the output image shows
the reference image. As indicated by red arrows: (a) heavy noise
may be introduced if the input low-light image is too dark; (b) in-
correct colors may be left over if the input underwater image is
blurry; (c) non-uniform distributed haze in the input image may
not be removed; (d) the output foreground may overfit the refer-
ence background with a solid color.

(with a learning rate of 3e−4 and a batch size of 1). Our
training loss is adopted from Zeng et al. [43]. We follow
Wang et al. [38] to use PSNR, SSIM, and LPIPS as per-
formance metrics. The results on the MIT-Adobe FiveK
benchmark [2] (Table 3) demonstrate that our model per-
forms on par with the state-of-the-art methods. The infer-
ence speed of our model is also comparable to the methods
designed to run in real time [38, 43].

E. On-Device Deployment of Neural Preset

On-device [8] (e.g., mobile or browser) applications ex-
pect a small computational overhead in the client to sup-
port real-time UI responses and a small amount of data
exchanges between the client/server to save network band-
width. However, existing color style transfer models are not
suitable for such applications: deploying them in the client
requires too much memory and is computationally expen-
sive, while deploying them in the server will significantly
increase the network bandwidth since high-resolution im-
ages must be transmitted over the internet. Instead, our
Neural Preset supports distributed deployment to alleviate
this problem: we can deploy the encoder E in the server
and nDNCM/sDNCM in the client. In this way, the client-
side calculation can be fast. Besides, only thumbnails and
the DNCM parameters are transmitted over the internet.

As illustrated in Fig. 11, when transferring color style
from a style image Is to an input image Ic, the client first
downsamples the two images and transmits their thumbnails
to the server. Note that the file size of a thumbnail with a
resolution of 256 × 256 is only about 30KB, but the file
size of a 4K resolution image can be up to 20MB. Then,

Method
Performance GPU Inference

MSE ↓ PSNR ↑ Time ↓ / Memory ↓

S2AM [7] 59.67 34.35 0.148 s / 6.3 GB
DoveNet [6] 52.36 34.75 0.072 s / 6.5 GB
BargainNet [4] 37.82 35.88 0.086 s / 3.7 GB
IntrinsicIH [13] 38.71 35.90 0.833 s / 16.5 GB
IHT [12] 37.07 36.71 0.196 s / 18.5 GB
Harmonizer [19] 24.26 37.84 0.017 s / 2.3 GB
CDTNet [5] 23.75 38.23 0.023 s / 8.1 GB

DNCM (Ours) 24.31 37.97 0.006 s / 1.1 GB

Table 2. Image Harmonization Results on iHarmony4. The
performance metrics (MSE and PSNR) are computed at 256 ×
256 resolution, while the inference time and memory footprint are
measured at Full HD resolution on a Nvidia RTX3090 GPU.

Method PSNR ↑ SSIM ↑ LPIPS ↓

UPE [37] 20.03 0.7841 0.2523
RSGUNet [16] 21.37 0.7998 0.1861
HDRNet [10] 22.15 0.8403 0.1823
Adaptive 3D LUT [43] 22.27 0.8368 0.1832
Learnable 3D LUT [38] 23.17 0.8636 0.1451

DNCM (Ours) 23.12 0.8697 0.1439

Table 3. Image Color Enhancement Results on FiveK. All per-
formance metrics are calculated at the Full resolution, i.e., the orig-
inal resolution of the test samples.
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Figure 11. On-Device Deployment of Neural Preset. Black ar-
rows represent server or client processing flow, while red arrows
represent network transmission between server and client.

the server calculates the color style parameters dc/rs (the
data size is about 3KB) from the uploaded thumbnails and
transmits dc/rs back to the client. Finally, the client per-
forms nDNCM/sDNCM on the high-resolution Ic to com-
plete color style transfer, which is fast and require only a
small memory footprint.
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[10] Michaël Gharbi, Jiawen Chen, Jonathan T Barron, Samuel W
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