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A1. Extended Results for CVD [1]
Further evaluation of our method and CVD on the MPI

Sintel dataset is presented in Fig. A2 and Table A1. As
CVD uses the Mannequin Challenge (MC) [1] network, we
use it as the backbone for our method too for fair evalua-
tion. CVD runs offline, fine-tuning the backbone network
for ∼20 minutes at inference-time. Consequently, its per-
formance is state-of-the-art and represents the high bar for
temporal consistency. Our method achieves a good por-
tion of the gains of CVD while being generalizable and on-
line. Furthermore, the constraints for optimizing CVD at
inference-time are obtained from COLMAP [4, 5] for static
regions of the scene only. As a result CVD can sometimes
filter moving objects as seen in the first row of Fig. A2.

A2. Blender Dataset
Figure A1 shows samples from the custom Blender

dataset we use for fine-tuning the temporal fusion network.
The scene consists of organically moving and deforming
humanoids in an indoor setting. We generate RGB im-
ages, ground truth depth, and camera poses for 50 stereo
sequences of 60 frames each (50×2×60 = 6000 frames at
1280×720 pixels). The camera poses are manually initial-
ized but follow random trajectories. We use both left and
right cameras to generate samples and use data augmenta-
tion to increase the diversity of the training data.

A3. Data Augmentation
We augment both the Blender dataset, and the FlyingTh-

ings3D [3] dataset described in Sec. 4 of the paper by apply-
ing random perturbations to the hue, saturation, brightness
and contrast of the RGB images. We also randomly add
camera shot noise to simulate real-world capture settings.
Further, we generate training samples as random crops of
500×500 and 320×320 pixels respectively from the Fly-
ingThings3D and Blender dataset. We encourage both net-
works to learn a depth scale invariant representation by ran-
domly scaling the input depth maps by s ∈ [0.2, 2].

A4. Network Architectures
The detailed architectural specifications of the tempo-

ral and spatial fusion networks are provided in Tables A2
and A3 respectively. Both networks are based on a four-
layer U-Net architecture, with the temporal fusion network

Figure A1. Samples from the custom Blender dataset we rendered
to train the temporal fusion network. It consists of 50 60-frame
sequences with human-like motion in an indoor setting. We aug-
ment the dataset using the techniques described in Sec. A3

.

having two additional sets of three residual blocks for pre-
processing the color and depth branches.
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MPI Sintel Dataset

OPW↓ SC↓ RTC↑ TCM↑ TCC↑ SD(L1)↓ RAE↓ RMS↓ RMS(log)↓ δ1 ↑ δ2 ↑ δ3 ↑
MC [1] 0.553 0.608 0.233 0.423 0.402 0.619 0.371 3.771 0.517 0.462 0.690 0.820

CVD-MC [2] 0.226
-59.1%

0.245
-59.7%

0.402
+72.5%

0.515
+21.7%

0.460
+14.4%

0.589
-4.85%

0.338
-8.89%

3.078
-18.4%

0.494
-4.66%

0.493
+6.71%

0.702
+1.74%

0.819
-0.12%

Ours-MC 0.377
-31.8%

0.399
-34.4%

0.360
+54.5%

0.443
+4.73%

0.423
+5.22%

0.583
-5.82%

0.361
-2.70%

3.711
-1.59%

0.506
-2.13%

0.466
+0.87%

0.696
+0.87%

0.823
+0.37%

Table A1. Comparing our approach to CVD using the Mannequin Challenge (MC) backbone for both methods. The percentage change in
each metric over the baseline (MC) is listed in color. CVD fine-tunes the backbone for each scene (∼20 mins) and runs offline.

MC CVD-MC Ours-MC Ground truth

Figure A2. Qualitative comparison of our method with CVD [2] on the MPI Sintel dataset. We use an MC [1] backbone for both methods.
The green and red boxes show an angular slice along the temporal dimension.



Temporal Fusion Network

Layer k s p Channels Input

down1-1 2/2 dt ⊕ dtp
down1-2 6/6 ct ⊕ ctp
resblock2-1 5 1 2 2/8 down1-1
resblock2-2 3 1 1 8/16 resblock2-1
resblock2-3 3 1 1 16/24 resblock2-2
resblock2-4 5 1 2 6/8 down1-2
resblock2-5 3 1 1 8/16 resblock2-4
resblock2-6 3 1 1 16/24 resblock2-5
up3-1 24/24 resblock2-3
up3-2 24/24 resblock2-6

conv1-1 3 1 1 52/24
up3-1 ⊕ up3-2 ⊕

dt ⊕ ct

conv1-2 3 1 1 24/24 conv1-1
maxpool1-1 3 1 1 24/24 conv1-2
conv2-1 3 1 1 24/48 maxpool1-1
conv2-2 3 1 1 48/48 conv2-1
maxpool2-1 3 1 1 48/48 conv2-2
conv3-1 3 1 1 48/96 maxpool2-1
conv3-2 3 1 1 96/96 conv3-1
maxpool3-1 3 1 1 96/96 conv3-2
conv4-1 3 1 1 96/192 maxpool3-1
conv4-2 3 1 1 192/192 conv4-1
maxpool4-1 3 1 1 192/192 conv4-2
conv5-1 3 1 1 192/384 maxpool4-1
conv5-2 3 1 1 384/384 conv5-1
up6-1 384/384 conv5-2
conv6-2 3 1 1 576/192 conv4-2 ⊕ up6-1
conv6-3 3 1 1 192/192 conv6-2
up7-1 192/192 conv6-3
conv7-2 3 1 1 288/96 conv3-2 ⊕ up7-1
conv7-3 3 1 1 96/96 conv7-2
up8-1 96/96 conv7-3
conv8-2 3 1 1 144/48 conv2-2 ⊕ up8-1
conv8-3 3 1 1 48/48 conv8-2
up9-1 48/48 conv8-3
conv9-2 3 1 1 72/24 conv1-2 ⊕ up9-1
conv9-3 3 1 1 24/1 conv9-2

Table A2. The network architecture for the temporal fusion net-
work Θ(·) (Sec. 3.1, main paper); k, s, p denote the kernel size,
stride and padding respectively, ⊕ is concatenation along the
channel dimension, and “down”/ “up” is ×2 bilinear down/up-
sampling. All convolutional layers in the lower section except
conv9-3 are followed by a ReLU activation and instance norm;
conv9-3 has a sigmoid activation. All convolutions are 2D with a
dilation of one.

Spatial Fusion Network

Layer k s p Channels Input

conv1-1 3 1 1 4/24 ct ⊕ dt OR ct ⊕ dtf
conv1-2 3 1 1 24/24 conv1-1
maxpool1-1 3 1 1 24/24 conv1-2
conv2-1 3 1 1 24/48 maxpool1-1
conv2-2 3 1 1 48/48 conv2-1
maxpool2-1 3 1 1 48/48 conv2-2
conv3-1 3 1 1 48/96 maxpool2-1
conv3-2 3 1 1 96/96 conv3-1
maxpool3-1 3 1 1 96/96 conv3-2
conv4-1 3 1 1 96/192 maxpool3-1
conv4-2 3 1 1 192/192 conv4-1
maxpool4-1 3 1 1 192/192 conv4-2
conv5-1 3 1 1 192/384 maxpool4-1
conv5-2 3 1 1 384/384 conv5-1
up6-1 384/384 conv5-2
conv6-2 3 1 1 576/192 conv4-2 ⊕ up6-1
conv6-3 3 1 1 192/192 conv6-2
up7-1 192/192 conv6-3
conv7-2 3 1 1 288/96 conv3-2 ⊕ up7-1
conv7-3 3 1 1 96/96 conv7-2
up8-1 96/96 conv7-3
conv8-2 3 1 1 144/48 conv2-2 ⊕ up8-1
conv8-3 3 1 1 48/48 conv8-2
up9-1 48/48 conv8-3
conv9-2 3 1 1 72/48 conv1-2 ⊕ up9-1
conv9-3 3 1 1 48/24 conv9-2
conv9-4 3 1 1 24/1 conv9-3

Table A3. The network architecture for the spatial fusion network
Φ(·) (Sec. 3.2, main paper); k, s, p denote the kernel size, stride
and padding respectively, ⊕ is concatenation along the channel di-
mension, and “up” is ×2 bilinear up-sampling. All convolutional
layers have a ReLU activation, with hidden layers using instance
normalization; All convolutions are 2D with a dilation of one.
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