
Supplementary Material

This section contains supplementary material that provides

additional details for the main paper and further experimen-

tal analysis. This section follows the contents in the follow-

ing order.

• Additional implementation details (Appendix A)

• Alternate prompting design choices (Appendix B)

• Understanding multi-modal prompts (Appendix C)

• Comparison of MaPLe with heavier Co-CoOp (Ap-

pendix D)

A. Additional Implementation details

In this section, we provide further hyper-parameter details

of the proposed approaches presented in the main paper. Ta-

ble 7 shows the hyper-parameters chosen for vision, lan-

guage and independent V-L prompting techniques. We use

a learning rate of 0.0025 for language and vision prompting,

and 0.0035 for independent V-L prompting.

Method Prompt Depth (K) V-tokens (P̃ ) T-tokens (P )

Language prompting 12 0 4

Vision prompting 12 4 0

I-V-L prompting 12 2 2

Table 7. Hyper-parameter settings for deep prompting variants.

I-V-L refers to independent V-L prompting. Here K represents

the depth of prompts. Number of prompt tokens in vision and

language branches are denoted as P̃ and P respectively.

CoOp in Co-CoOp setting: The CoOp approach trained

in Co-CoOp setting (denoted by CoOp†) uses training con-

gurations of CoCoOp. Similar to Co-CoOp training,

CoOp† trains the standard CoOp method for 10 epochs in-

stead of default 200 epochs. We use a batch size of 4 with a

learning rate of 0.0035.

B. Alternate Design Choices

Prompt Initialization: Table 8 shows the effect of prompt

initialization on MaPLe. Best performance is achieved

when the learnable prompts in the rst layer are initialized

with the prompt ‘a photo of a <category>’ and rest of the

layers are initialized randomly (row-3). Initializing prompts

with a similar template in all layers leads to lower perfor-

mance suggesting that this is redundant as these prompts

learn hierarchically different contextual concepts in differ-

ent layers (row-1). However, complete random initializa-

tion of prompts provides competitive performance (row-2).

For implementation, if the number of learnable prompts

M = #P are less than the total tokens of initial prompt

template, we convert the former M word embeddings of

template with learnable prompts and consider the rest of

word embeddings of prompt template as xed and use all

token embeddings (learnable prompts + xed word tokens)

as input to text encoder.

Method Base Novel HM

1: MaPLe: All layers: ‘a photo of a’ 81.90 74.22 77.88

2: MaPLe: Random initialization 82.27 75.10 78.52

3: MaPLe: Only rst layer: ‘a photo of a’ 82.28 75.14 78.55

Table 8. Ablation on prompt initialization. In general, the perfor-

mance of MaPLe is affected by the choice of prompt initialization.

Direction of prompt projection: As discussed in Sec-

tion 3.2.3, MaPLe explicitly conditions the vision prompts

P̃ on the language prompts P (P → P̃ ) using a V-L cou-

pling function F . Here, we provide analysis for an alter-

native design choice where P is conditioned on P̃ (P̃ →

P ). Table 9 shows that our approach (P → P̃ ) is a bet-

ter choice which can be reasoned by the lower information

loss in such a design since the dimension size dv of vision

prompts is greater than the dimension size dl of language

prompts.

Exploring other prompting designs: We provide analysis

on other possible multi-modal prompting design choices in

comparison to MaPLe. As learnable prompts in different

transformer layers do not interact with each other, we ex-

plore a progressive prompting approach where the prompts

at each block are conditioned on the prompts from the

previous block via linear projection which are then added

with the deep prompts initialized at every corresponding

layer. We apply this approach to independent V-L prompt-

ing (row-1) and MaPLe (row-2). To analyze whether in-

dependent V-L prompting and MaPLe provide complemen-

tary gains, we also explore a design choice combining them

together (row-3) in the same model. The results in Ta-

ble 10 indicate that MaPLe provides best performance as

compared to other design choices.

C. Understanding Multi-modal Prompts

Our experimental results in Section 4.3 indicates that the

performance gains of MaPLe in comparison to Co-CoOp

varies signicantly across different datasets. For some

datasets, like ImageNet and Caltech101, the gains are less

than 1%, while on other datasets like EuroSAT, FGVCAir-

crafts and DTD, MaPLe shows signicant improvements

like +13% over Co-CoOp. To better understand at which

cases MaPLe is most effective, we dissect the individual

dataset performances and perform an exhaustive per-class

analysis. Consistent with earlier work [1], we conjecture

that CLIP pretraining dataset has been curated in a way that

maximizes its zero-shot performance on ImageNet-1k and

can be used as a proxy for CLIP pretraining dataset. Fur-



Prompt Proj. Base Novel HM

P̃ → P 81.37 73.25 77.10

P → P̃ 82.28 75.14 78.55

Table 9. Projecting from P to P̃ provides the best results.

Method Base Novel HM

1: I-V-L + Progressive prompting 81.20 74.92 77.93

2: MaPLe + Progressive prompting 81.45 75.04 78.11

3: MaPLe + I-V-L prompting 82.27 74.05 77.94

4: MaPLe 82.28 75.14 78.55

Table 10. Analysis on alternative design choices for V-L prompt-

ing. Overall, MaPLe proves to be the best variant among alternate

prompting-related design choices.

ther, datasets like EuroSAT (satellite images) and DTD (tex-

ture dataset) has more distributional gap from ImageNet [1].

Fig. 5 shows per class analysis for selected datasets in the

order of increasing diversity (distribution gap w.r.t CLIP

pretraining dataset, i.e. generic objects). The overall trend

indicates that MaPLe is more effective than Co-CoOp as

the diversity of the dataset increases. We conjecture that

this is because ne-tuning or prompting bridges the gap be-

tween the distribution of the downstream and the pretraining

dataset and thus improves the performance. However, the

effectiveness would therefore be less substantial for datasets

with little distribution shifts. This intriguing property is also

validated for visual prompting in literature [1]. MaPLe pro-

vides completeness in prompting by learning both vision

and language prompts to effectively steer CLIP, this makes

it more adaptive than Co-CoOp to improve on datasets with

larger distribution shifts.

Additionally, we note that MaPLe benets on categories

which would have been rarely seen by CLIP during its pre-

training (400 million image caption dataset, obtained from

internet images). We observe that MaPLe provides signif-

icant gains over Co-CoOp for vision concepts that tend to

be rare and less generic, e.g., satellite images. In contrast,

MaPLe performs competitively to Co-CoOp on frequent

and more generic categories e.g., forest, river, dog, etc.

Multi-modal prompts allow MaPLe to better adapt CLIP

for visual concepts that are rarely occurring as compared to

existing uni-modal prompting techniques. In Table 12, we

highlight category-wise comparison between MaPLe and

Co-CoOp for some selected datasets.

Text embeddings analysis: As all samples within a cat-

egory are represented using a single text embedding, we

take a quantitative approach in Tab. 11 for analyzing the

text embeddings of CoOp and MaPLe. We show the pair-

wise cosine similarity and normalized l2 distance metrics

averaged across text embeddings. We observe that MaPLe

shows better separability among the categories.

l2 distance ↑ Cosine similarity ↓

Method DTD UCF EuroSAT DTD UCF EuroSAT

CoOp 0.87 0.85 0.57 0.62 0.63 0.83

MaPLe 0.93 0.87 0.78 0.57 0.62 0.69

Table 11. Avg. cosine similarity and l2 distance of text embed-

dings. MaPLe shows better separability among the text categories.

Dataset
MaPLe is better Co-CoOp is better

than Co-CoOp than MaPLe

Caltech101 Crontosaurus, Elephant,

(Generic Objects) Gerenuk, Sea Horse Ceiling Fan, Cellphone

EuroSAT Annual Crop Land,
-

(Satellite Image) Permanent Crop Land

UCF101 Handstand Walking, Walking With Dog,

(Action recognition) Playing Daf Horse Riding

Table 12. Analyzing the nature of categories where MaPLe per-

forms better than Co-CoOp. Co-CoOp performs favourably well

on generic categories, while MaPLe provides benets on classes

that are typically rare.

D. Comparing MaPLe with Heavier Co-CoOp

The multi-modal deep prompting architecture design of

MaPLe along with its V-L coupling function F constitutes

more learnable parameters as compared to CoOp and Co-

CoOp. To verify that the performance gain is not due

to increased parameter count, we compare Co-CoOp with

MaPLe shallow (J = 1) that utilizes prompts only at the

rst layer of vision and language branch of CLIP. Further,

we also experiment with a heavier Co-CoOp in which we

retrain a version of Co-CoOp that matches the parameter

count of MaPLe (J = 9) by stacking multiple additional

layers in its Meta-Net block. Table 13 indicates the effec-

tiveness of multi-modal prompting in MaPLe (for both J =

1 and J = 9) over the heavier Co-CoOp. In addition to that,

we experiment with MaPLe†, which uses a unied V-L cou-

pling function for all layer prompts. MaPLe† with about 9x

lesser parameters than MaPLe also improves over existing

methods. This shows that the difference in the number of

parameters is not the cause of gain in our case and the pro-

posed multi-modal prompting design choice makes a differ-

ence.

Method Base Novel HM

Co-CoOp 80.47 71.69 75.83

Heavier Co-CoOp 80.14 72.02 75.86

MaPLe shallow (J = 1) 80.10 73.52 76.67

MaPLe† (J = 9) 82.29 74.34 78.11

MaPLe (J = 9) 82.28 75.14 78.55

Table 13. Comparison of MaPLe with a heavier Co-CoOp model.

We retrain a heavier version of Co-CoOp which is comparable

with MaPLe in terms of total parameter count. MaPLe† is a

MaPLe version which utilizes a common V-L coupling function

for all layers.


