
Appendix
In this appendix, we provide additional explanations, ex-

periments, and results:
• Section A: Implementation details of our guide image,

mask construction, and optimization.
• Section B: Details of our FFHQ-S test set construction.
• Section C: Additional experiments.
• Section D: Additional ablation studies.
• Section E: Comparison to a concurrent work.
• Section F: Additional real-image hairstyle transfer re-

sults and examples from our user study.
• Section G: Failure cases.
• Section H: Negative societal impact

A. Implementation Details
For guide image construction and image blending, we

rely on 2D facial keypoints predicted by Dlib library [22]
and semantic regions predicted from a pretrained segmen-
tation network [42, 48]. The semantic output contains 19
classes, but we group them into 6 classes: face, ear, nose,
neck, hair, and background. After both input face If and
reference hair Ih are aligned in both viewpoints, we denote
by Hhair, Hface, ... the semantic regions of Ih for the hair,
face, or other parts, and analogously by Fhair, Fface, ... for the
parts in If .

A.1. Face-Hair Alignment

The purpose of this step is to create pose-aligned versions
of If and Ih. That is, a new If in the head pose of Ih and
a new Ih in the head pose of If . These pose-aligned If , Ih
will be used to construct guide images. We utilize EG3D [6]
for this task and use uniform scaling and translation to match
their faces’ widths and positions. We first explain the process
to warp Ih to match the head pose of If . The other direction
from If to Ih will be done similarly with a small change,
discussed afterward.

A.1.1 EG3D Warping

We use EG3D [6] to rotate Ih to match If ’s pose. While
EG3D projection can provide consistent geometry, the orig-
inal details are often not well preserved. To fix this, we
present a warping method that directly uses the original hair
pixels by utilizing the EG3D estimated geometry, as shown
in Figure 6. We preprocess an input image and determine
the camera pose using the EG3D-proposed technique. We
use the official code of EG3D with their ffhq512-64.pkl
checkpoint.

Mesh Retrieval: We project Ih into EG3D’sW latent
space using PTI [29], ignoring the hat region, which can
lead to inaccurate segmentation after projection. Then, we
use the Marching cube algorithm [24] to construct a triangle
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Figure 6. Overview of EG3D warping: We rotate Ih to the pose
of If , and vice versa (not visualized in the diagram). This is done
by combining the projection and geometry consistency of EG3D
with the texture detail of the input image.

mesh from the volume density of EG3D. We assign colors
to the mesh by reprojecting the mesh onto Ih and use the
pixel colors from Ih. We store the triangles that belong to the
hair region of Ih in a set Ψ. This will be used to determine
which pixels in the mesh, after being warped into the target
viewpoint, correspond to the original hair pixels from Ih.

Target-Viewpoint Rendering: We render the mesh in the
512x512 resolution in If ’s pose and replace all pixels outside
the hair region of Ih (not in Ψ) with the Ih’s projection that
is warped to the If ’s pose by EG3D. We repeat the same
process to warp If to Ih, but switching their roles and change
the set Ψ to contain the face region of If instead.

A.1.2 Uniform Scaling and Translation:

We align Ih with If by uniform scaling and translation to
match the faces’ widths and centers. The face width is cal-
culated as the difference in the x-coordinate between the
right-most (k16) and left-most (k0) keypoints. The x and y
center coordinates are computed separately. The x-center is
the x coordinate of (k0 + k16)/2 and the y-center is the y co-
ordinate of ((k0+k16)/2+k8)/2. This improves alignment
of faces with larger pose differences.

A.2. Color Fill-In in the Guide Image Construction

To construct Iguide, there are some corner cases that need
to be properly handled, such as when the existing hair in the
input is larger than the reference hair. Fortunately, addressing
most corner cases amounts to handling the following four
scenarios, as shown in Figure 7.

1. If the existing hair shape in If is larger than the refer-
ence hair in Ih, fill the hair region not overlapped by
the reference hair with the average background color.

2. If If has bangs on the forehead, remove them by filling
that region with the average skin color.
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Figure 7. Guide image construction. We create a guide images
Iguide with a simple cut-and-paste of the hair from Ih onto If with
a few modifications to handle the four scenarios in Section A.2.
(We also create another guide image by transferring the face from
If to Ih, but not visualized by this diagram.) We solve this by
first creating a temporary canvas image Itmp to remove the original
hair in If (Scenario 1; A,B), transfer the visible ears from Ih to
Iguide (Scenario 4; C), and remove If ’s bangs (Scenario 2; D) while
preserving the face width of If (Scenario 3; E). Then, we combine
Itmp with If and Ih to create Iguide.

3. If If has a narrower face than Ih, the guide image
should retain the face width of If and fill in both sides
next to the face with the hair color of Ih.

4. If the ears are visible in Ih, transfer the ear regions to
the guide image and fill those regions with the skin
color of If .

We first create a temporary canvas image Itmp as follows.
We fill the region Fhair in Itmp with the average color of the
pixels within Fbg (background) in If (Scenario 1), and copy
Hhair in Ih to Itmp. Then, if Hear exists (Scenario 4), fill the
region Hear in Itmp with the skin color of If . We approximate
the skin color by averaging the nose pixels of the If in Fnose.
Then, to remove the existing hair (Scenario 2), we fill the
face area of Itmp defined by the area above keypoints k0−k16
with the If ’s skin color. This face area is denoted by F k

face.
We then fill Itmp in the region F k

face ∩ (Hface ∪ Hneck) with
the If ’s skin color. In the case where If has a narrower face
(Scenario 3), we fill (Hface∪Hneck)−F k

face with the hair color
of Ih in a row-by-row basis. After Itmp has been created, our
Iguide is constructed by first setting Iguide = If , then copying
the content in the region Fhair of Itmp to Iguide. Lastly, when
some part of Hhair overlaps with Fface, it is unclear whether
the overlapped region should be hair or face in Iguide. To
solve this, we update Hhair by removing any region of Hhair
that lies outside of the face region defined by the detected
keypoints. With this updated Hhair, we copy the hair of Ih in
this region to Iguide to finish its construction.

A.3. Mask Construction

We show the masks used in each loss function in Figure 8.

M f
roi;Mf represents the face region of Iguide, computed

by Fface −Hhair −Hhat. Additionally, we erode the region
in Mf that is higher than the eyebrows (5 pixels above the
highest keypoints) using 5 iterations.

M h
roi;Mh represents the hair region of Iguide, computed

by erode(Hhair, 5). (I.e., eroding Hhair using 5 iterations)
M bg

roi;Mbg represents the background region in If that
is not covered by the transferred hair, computed by Fbg −
dilate(Hhair ∪ Mout, 5), where Mout represents out-of-the-
frame regions. (Suppose, for example, Hhair extends down
to the bottom edge of Ih, the entire region below it in Mout
will be marked 1). Because there is no accurate background
in the Ih viewpoint, every pixel in M hair

bg is zero.
M f

rnoi represents the face region in If that was previously
occluded but should be visible in the final output, computed
by F k

face +Hear −Mf.
M h

rnoi represents the hair region that was previously oc-
cluded by other objects or not visible due to image cropping,
computed by Hhat ∪Hface ∪Hneck ∪Mout.

Mc represents the regions in Iguide that were copy-pasted
from If or Ih (including warped pixels), computed by
erode(Mf ∪ Mh ∪ (Fbg ∩ O1

bg), 5), where O1
bg represents

the background region in O1.
Mraw represents the regions in Iguide that were copy-

pasted from If or Ih with the original pixel content. The
mask M face

raw is computed by erode(Mbg∪Mf, 10), and M hair
raw

is erode(Mh, 5).

A.4. Regularization Losses

This section elaborates on the regularization losses de-
scribed in prior work.

Noise Regularization Loss: This loss proposed in Style-
GAN2 [19] is used ensure that the noise maps capture only
the stochastic variations, by encouraging the optimized noise
maps to be normally distributed via minimizing the normal-
ized spatial autocorrelation:

Lε =
∑

i,j

(
mean(nj

i ⊙H(nj
i ))

2 + mean(nj
i ⊙ V (nj

i ))
2
)

,

(11)
where H(·), V (·) shift the noise map horizontally/vertically
by one pixel with wrap-around edges. And for each noise
map ni, the autocorrelation is computed for different down-
scaled versions n0

i , n
1
i , ... down to the 8x8 resolution.

PTI Regularization Loss: This loss proposed in PTI [29]
restricts any change in the latent space to a small area. In
each iteration, we sample wz fromW space, then create an
interpolated latent code wr between wz and the optimized
latent code w with an α parameter.

wr = woptimized + α
wz − woptimized

∥wz − woptimized∥2
(12)
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Figure 8. Masks used in each loss function. Masks used on the
deep features in LPIPS are in pink frames, and masks used for
RGB-premasking are in blue frames.

To compute the final loss value, we feed the latent code
wr into the original StyleGAN to produce R and into a
weight-tuned StyleGAN to produce R∗.

Lr = LLPIPS(R,R∗) + LMSE(R,R∗) (13)

A.5. Optimization Details

For our W and W+ latent optimization, we use Adam
optimizer [23] with (β1, β2) = (0.9, 0.999). We run the
optimization for 1,000 iterations in the first stage, and 500
iterations in the second stage with the same learning schedule
used in StyleGAN2 [19]. The learning rate is ramped up
linearly from 0 to 0.1 during the first 5 percent of iterations
(50/25) and ramped down with a cosine schedule during the
last 25 percent of iterations (250/125). The initial w0 used in
the first stage is computed by averaging 10,000 latent codes
(Section 3.2.1).

The parameter Λ(i), which is used to scale L[f/bg]
per in If

viewpoint and Lh
per in Ih viewpoint, is set to 6 in the first

stage, 4 in the second stage. (The other losses are scaled
by 1). The parameters (λf

p, λ
h
p, λ

bg
p , λg, λi, λε, λs) are set to

(2, 1, 0.66, 2, 4, 105, 3) in the first stage, (1, 2, 1, 2, 4, 105, 2)
in the second stage.

We perform PTI [29] optimization in the third stage for
500 iterations. We multiply LLPIPS with 2 and use the default
PTI parameters.

For PTI in the EG3D projection, we follow EG3D’s opti-
mization procedure, which runs 500 iterations forW latent
optimization and 500 iterations for tuning.

A.6. Running Time Comparison

We measured our runtime on a single GPU NVIDIA RTX
2080Ti with AMD Threadripper 2920x. We used around
21 minutes per input pair. The construction time for the
guide images is around 13 minutes: 5 minutes for EG3D
projection and 6–10 minutes for EG3D warping. Multi-view
latent optimization requires around 8 minutes.

Note that we have not optimized our code, and many of
the 3D pre-processing steps (8 mins), such as our occlusion
test and marching cube, can be implemented on the GPU
with real-time speed (currently, it’s in python). Techniques
such as PSP [28] can speed up and perform our EG3D projec-
tion with a single network inference. The rest of the pipeline
takes about 8 mins, which is in the same order as LOHO: 15
mins, Barbershop: 5 mins, and StyleYourHair: 8 mins. Hair-
Net still does require StyleGAN projections and PTI [29] for
pre-precessing, which take several minutes per image.

B. Construction of Our FFHQ-S Testset

This section explains the criteria used for determining the
four scenarios in 12-Config FFHQ-S in Table 1. All criteria
are computed from raw If and Ih. We skip any pair in which
the number of hair pixels in Ih is less than 5 percent of all
the pixels in the image.

Pose Misalignment: The criterion for this scenario is
based on the difference between the yaw angles of If and
Ih, estimated from facial keypoints [16]. The angle differ-
ence between [0,15) is indicated with ‘-’, [15, 30) with a
checkmark, and [30, 45) with double checkmarks in Table 1.

Needs Face Inpainting: This criterion tests whether If ’s
face is occluded, by checking if the number of pixels in
Hface − F k

face is greater than 10 percent of all pixels.
Needs BG Inpainting: This criterion tests whether a

substantial number of background pixels need to be halluci-
nated. This happens when If ’s hair is smaller than Ih’s hair
or, specifically, when the number of pixels of Hhair - Fhair is
greater than 15 percent of all pixels.

Ih Contains Hat: This criterion tests whether some part
of the reference hair in Ih is missing due to hat wearing by
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Figure 9. Results when StyleYourHair [20] and Barbershop [46]
use our rules to create the target segmentation mask: Bangs and
unnecessary hair are totally removed (A). However, the modified
target segmentation is not realistic (similar to our guide) and pro-
duces unrealistic hair shapes (B) with poorer color reproduction
(C). Although our modified target segmentation can improve Bar-
bershop’s result in the second row, it cannot improve StyleYourHair,
whose technique also includes a hair-warping stage (D).

checking if the number of pixels in Hhat is greater than 5
percent of all pixels.

C. Additional Experiments
C.1. Can Prior Work Solve Challenging Scenarios

With a Good Target Segmentation Mask Con-
structed Using Our Rules?

In this section, we construct a target segmentation mask
based on our rules in Section 3.1 / Appendix A.2 and use it
in place of the original mask used in StyleYourHair [20] or
Barbershop [46], then compare their results with ours.

Figure 9(A) shows that the original Barbershop and Sty-
leYourHair fail to completely remove bangs from the fore-
head or add more hair that makes the hairstyle incorrect, but
the modified version using our provided target segmentation
mask can remove the bangs completely as well as any unnec-
essary hair. Compared to our method, this modified version
still produces (B) unnatural hairstyles with (C) poorer color
reproduction.

Unlike Barbershop and StyleYourHair, which use a high-
dimensional latent space that can overfit the error-prone
target segmentation mask, our method can better refine the
boundaries between semantic regions by first predicting the
output in original latent space that ensures natural-looking
hair before refining the output in the extended space with
LPIPS pre-masking for seamless blending. Importantly, this
shows that our state-of-the-art quality requires not only our
well-designed guide image but also our multi-view latent
optimization that uses the guide image in a flexible and
effective manner.

C.2. Quality of Hairstyle Transfer

Following StyleYourHair [20], we compute the FID score
to compare the distributions of the results and real images.

LOHO Barbershop StyleYourHair Ours

Hairstyle (FID ↓) 20.72 21.22 21.64 21.02

Table 4. FID scores after performing the hairstyle transfer (Section
C.2).

Input W space W+ space F/S space PTI

Figure 10. Comparison of different reconstruction techniques or-
dered by the degree of freedom. PTI with the highest degree of
freedom successfully reconstructs the texture and color details of a
woman with heavy makeup, as shown in this example.

However, note that FID is not ideal for this task because an
algorithm that minimally changes or does not change any
hair at all can achieve the best performance. We use the same
dataset in Section 4.4. All methods yield comparable results
and are roughly equivalent, shown in Table 4. LOHO, which
has face and background blending, receives the best FID
score of 20.7. However, according to our user study, people
are less likely to prefer LOHO over other methods.

C.3. Comparison of the ability to preserve details.

To evaluate the effectiveness of each method in preserv-
ing image details, we perform an image reconstruction task
without employing the hairstyle transfer technique, in order
to eliminate any potential external factors. Figure 10 demon-
strates that the ability to preserve details highly depends on
the degree of freedom (sorted descendingly): pivot tuning
inversion (PTI), F/S space,W+ space, andW space.

D. Additional Ablation Studies

D.1. Qualitative Ablation Studies

Ablation studies with quantitative metrics are highly dif-
ficult to do because there is no ground truth and the existing
metrics such as FID score are unreliable. For example, drop-
ping the latent sharing (Figure 4a) can produce a better
FID score despite the clearly wrong hairstyle, which is not
captured by FID. Nonetheless, we identified three most cru-
cial components and conducted an additional user study (30
randomly sampled input pairs, each evaluated by 3 different
users). The users preferred our full method 27.9% of the
time, compared to Config i) 23.4%, ii) 4.5%, iii) 25.2% in
Figure 4.
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Figure 11. Ablation study on W space latent optimization. Without our latent interpolation technique, the results are less realistic (A,B,C,D).
If we fix the interpolation coefficient α, some information, such as color, may not be shared between two viewpoints (E), resulting in poorer
background details (F).

D.2. Ablation studies on latent sharing and the loss
function.

We test additional ablation configurations on our multi-
viewW space latent optimization: i) sharing w latent code
without interpolation, and ii) fixing α to 0.5. The results are
shown in Figure 11. We also test our complete pipeline iii)
without using L32

MSE and show the results in Figure 12.
Instead of sharing the latent code with our interpolation

technique, we optimize a shared latent code, which is fed
to the last l layers of StyleGAN (wl:18) for optimizing both
views (Config i). This is similar to the concept of sharing
w+ latent code in Section 3.2.2, but with fewer parameters
(19x512 fewer than w+ code, and 512 more than w code).
We add the latent similarity loss (see Section 3.2.1) between
the latent codes used for StyleGAN’s early layers and the
new latent code to ensure that all latent codes are similar,
which can avoid overfitting.

In Figure 11, Config i) may produce unrealistic head
shapes (Figure 11-A) or necks (Figure 11-B in the first stage.
This artifact still manifests in the second and third stages
of optimization (Figure 11-C. This Config i) has a higher
degrees of freedom and thus can fit unrealistic guide images.

When we fix the interpolation coefficient α (Config ii),
the results also contain unrealistic head shapes (Figure 11-
D), and the colors of the face, hair, or background may look
different in each viewpoint (Figure 11-E). As a result, the
hallucinated background from this configuration becomes
less accurate (Figure 11-F). Our proposed method helps alle-
viate this issue by forcing the shared part to be similar via
random interpolation. In particular, the optimizer is encour-
aged to use the same values for both latent codes so that their
interpolation with any α will remain stationary.

Without L32
MSE (Config iii), the optimization in each stage

would not try to reproduce the overall appearance of Iguide
and is free to synthesize arbitrary content on regions not
constrained by any loss function. This can result in more
realistic background details (Figure 12-A) but less realistic
shading (Figure 12-B) or excessive hair (Figure 12-C).

Input Hair Input Face No Lmse32 Full Pipeline (Ours)Iguide

A

B

B

C

Figure 12. Ablation study on L32
MSE. Without this loss, the regions

not constrained by any loss function can be hallucinated freely.
While this can lead to some positive results, such as better back-
ground details (A), it can also produce unrealistic shading (B) or
excessive hair (C).

E. Comparison to concurrent work, HairNet

HairNet is also capable of pose-invariant hairstyle transfer.
Unfortunately, their official code is not publicly available
during our study. We provide a qualitative comparison in
Figure 13 and conducted a user study on their selected input
pairs (380 input pairs, each evaluated by 3 different users).
The participants preferred our results 52.4% of the time,
whereas HairNet was selected for 47.6%.

We observe that HairNet often fails to preserve input
face identity or hair details (Figure 13, top row). Our method
excels at rotating the input hair (left side, 2nd row) and restor-
ing unseen facial features (2nd row, right side). Conversely,
HairNet is better at filling in background details (left side,
last row) and producing realistic hair and lighting details
(right side, last row).

In addition, we calculate the maximum, minimum, and
average pose difference of HairNet’s input pairs, which are
22.8, 0.0, and 4.7, respectively. We suggest using our datasets
for further analysis of the results in future work.
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Figure 13. Comparison to concurrent work, HairNet. Our method
is better at preserving input face identity and input hair details
(top row), hair rotation (left side, 2nd row), and face inpainting
(right side, 2nd row). Conversely, HairNet is better at background
inpainting (left side, last row) and producing realistic hair and
lighting details (right side, last row).

F. Additional Results
In this section, we present more qualitative results in

Figure 14, 15, and random test samples from our user study
in Figure 16, 17, and 18.

G. Failure Cases
Figure 5 compiles a set of our failure cases. We cannot

transfer hairstyles with incorrect semantic regions (Figure 5-
A). Large errors from the keypoint detector can place the hair
in the wrong place (Figure 5-B). Poor EG3D projection re-
sults may make the hair look different from the reference hair
(Figure 5-C). Some hair may be blended into the background
if the reference hair has a similar color as the background
(Figure 5-D). Other failure cases include mismatched light-
ing conditions (Figure 5-E) and highly unusual hairstyles
(Figure 5-F).

H. Potential Negative Societal Impact
Even though the hairstyle transfer results from our

method are realistic, they are considered fake images and can
have similar uses and misuses as DeepFake. The results may
contain some artifacts that another network can easily de-
tect [10]. Our method relies on multiple pretrained networks,
which may contain race, gender biases. Our method also
may not work as well on people who are less represented in
the training set.

We also consider the validity of the copyright for the ref-
erence hair after it has been transferred to our input, as well
as the possibility of transferring the hairstyles of others with-
out their permission. To circumvent this, we suggest that the
use of both input face and reference hair be under Creative

Commons licenses to prevent any potential conflicts.
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Figure 14. Our method can transfer the hairstyle from any reference hair image in the top row to an input person [4,9,27,31,34,36,38,39] in
each row.
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Figure 15. Our method can transfer the hairstyle from any reference hair image in the top row to an input person in each row.
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Figure 16. Random test samples from FFHQ-S for comparison to StyleYourHair [20], Barbershop [46], and LOHO [30].
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Figure 17. Random test samples from FFHQ-S for comparison to StyleYourHair [20], Barbershop [46], and LOHO [30].
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Figure 18. Random test samples from FFHQ-P for comparison to StyleYourHair [20], Barbershop [46], and LOHO [30].
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