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A. Additional Results
A.1. Videos

We provide an accompanying supplementary video that
better visualizes and demonstrates that our methods, DATID-
3D, enables the shifted generator to synthesize multi-view
consistent images with high fidelity and diversity in a
wide range of text-guided targeted domains at gwang-
kim.github.io/datid_3d.

A.2. Results of text-driven 3D domain adaptation

More results for text-driven 3D domain adaptation us-
ing the EG3D [4] generators pre-trained on FFHQ [14] or
AFHQ Cats [5, 13] are illustrated in Figures S1 and S2, re-
spectively. Without additional images and knowledge of
camera distribution, our framework allows the synthesis of
diverse, high-fidelity multi-view consistent images in a wide
range of text-guided domains beyond the training domains.

A.3. Results of pose-controlled synthesis

The results of our pose-controlled image and 3D shape
synthesis in the text-guided domain are shown in Figure S3.
For more results, see the provided supplementary video.

A.4. Additional qualitative comparison results.

In Figure S4, we provide the more qualitative comparison
of our method with two baselines, StyleGAN-NADA∗ [20]
and HyperDomainNet∗ [1]. By exploiting text-to-image
diffusion models and adversarial training, our framework
helps the shifted generator to synthesize more photorealistic
and varied images.

A.5. Additional quantitative comparison results.

We additionally evaluate Kernel Inception Distance
(KID) [2] to calculate the distance between the distributions

†Corresponding author.

of generated samples and test images in the target domain
because when the dataset is small, Frechet inception distance
(FID) [10] can be easily biased while KID adopts unbiased
design. As used in the user study, EG3D pre-trained on 5122

images in FFHQ [14] and four text prompts converting a
human face to ‘Pixar’, ‘Neanderthal’, ‘Elf’ and ‘Zombie’
styles, respectively, are employed for evaluation. We gener-
ate 3,000 images generated through text-to-image diffusion
models with a different random seed per text prompt. As
presented in Table S1, our results demonstrate the superior
KID as compared to the baselines.

Table S1. Quantitative comparisons with the baselines in diversity,
text-image correspondence and photo realism.

KID↓

StyleGAN-NADA∗ 0.156
HyperDomainNet∗ 0.133
Ours 0.012

B. Details on Methods
B.1. Algorithms

Text-guided target dataset generation. The algorithm
for text-guided target dataset generation is described in Al-
gorithm 1. With each random latent vector zi ∈ Z and
camera parameter ci ∈ C, we synthesize a source image
xsrc
i using pre-trained 3D generator Gθ. Then, guided by

a text prompt y, we perform text-guided image-to-image
manipulation (T_I2I) to generate xtrg

i from xsrc
i using the

text-to-image diffusion model ϵϕ. In T_I2I, we first em-
bed xsrc into q0 through EV and perturb it to generate qtrg

tr
through the stochastic forward DDPM (Denoising Diffu-
sion Probabilistic Models) process [11] while the return step
tr < Tp, where Tp is the pose-consistency step. Then, we
execute the sampling process to obtain qtrg0 from the noisy
latent qtrg

tr using ϵϕ. s controls the scale of gradients from
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Figure S1. Variety of text-guided adaption results. We fine-tuned EG3D [4], pre-trained on 5122 images in FFHQ [14], to generate diverse
samples for a variety of concepts.

a target prompt y and a negative prompt yneg. Finally, the
target image xtrg is obtained using the VQGAN decoder DV .
By repeating the above process N times, we can construct a
target dataset D.

CLIP and pose reconstruction-based filtering. The al-
gorithm for CLIP and pose reconstruction-based filtering
process is presented in Algorithm 2. For all (xsrc

i ,x
trg
i ) in

the raw target dataset D, we first compute the CLIP distance
score dCLIP between the target image xtrg

i and the target
prompt y. If dCLIP > α, then replace xtrg

i with a new one
through T_I2I and repeat the CLIP-based filtering again.

Otherwise, we convert xtrg
i to a reconstructed image xrec

i

using the Reconstructor latent diffusion ϵϕrec . Then, we
calculate the pose difference score dpose between the recon-
structed image xrec

i and the target image xtrg
i . If dpose > β,

then replace xtrg
i with a new one through T_I2I and repeat

the CLIP-based filtering again. Otherwise, we can finish the
filtering for xtrg

i and save a set of (ci,xsrc
i ,x

trg
i ) to Df . In

practice, it sometimes takes a too long time to repeat the pro-
cess until xtrg

i passes, we only repeat it by Kf times, which
was set to 5 for our experiments.
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Figure S2. Variety of text-guided adaption results. We fine-tuned EG3D [4], pre-trained on 5122 images in AFHQ Cats [5, 13] to generate
diverse samples for a variety of concepts.

Diversity-preserved domain adaptation. The algorithm
for diversity-preserved domain adaptation is provided in
Algorithm 3. We first clone the pre-trained 3D generator
Gθ to Gθ′ and initialize pose-conditioned discriminator Dψ .
For i = 1, 2, ..., N , we first sample a random latent vector
and camera parameter. Then, we compute ADA loss for
the generator Lθ′ADA with generated images Gθ′(zi, ci) using
Dψ and the stochastic non-leaking augmentation A. Also,
we calculate the density regularization loss Lden with ran-
domly chosen points v from the volume V for each rendered
scene. With these two losses, the generator is updated. Next,
we compute ADA losses for the discriminator, Lψ,fake

ADA and

Lψ,real
ADA , with generated images Gθ′(zi, ci) and real targets

xtrg
i , respectively. Combining these two losses, the discrimi-

nator is updated. We repeat this process for K epochs.

C. Implementation Details

C.1. 3D generative model

We adopt EG3D [4], the state-of-the-art 3D generative
model pre-trained on 5122 images in FFHQ [14] and AFHQ
Cats [5, 13] as our source generator. Its generator is com-
posed of a backbone, decoder, volume rendering, and super-
resolution parts. The backbone consists of the StyleGAN2
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Figure S3. Pose-controlled images and 3D shapes in text-guided domain through our method. See the supplementary videos at gwang-
kim.github.io/datid_3d

Figure S4. Qualitative comparison with the 3D extension of existing 2D text-guided domain adaptation methods (the star mark (*)). Our
DATID-3D yielded diverse samples while other baselines did not.
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Algorithm 1: Text-guided target dataset generation

Input: Gθ, ϵϕ, EV , DV , y, yneg, tr, s, N , *
Output: D = {(ci,xsrc

i ,x
trg
i )}Ni=1

1 Function T_I2I(xsrc, y, yneg, ϵϕ, *):
2 q0 = EV (xsrc), n ∼ N (0, I)

3 qtrg
tr =

√
ᾱtrq0 +

√
1− ᾱtrn

4 for t = tr, tr − 1, . . . , 1 do
5 ϵcomb

ϕ = sϵϕ(q
trg
t , t, y) + (1− s)ϵϕ(q

trg
t , t, yneg)

6 qtrg
t−1 = Sampling(qtrg

t , ϵ
comb
ϕ , t)

7 xtrg = DV (qtrg
0 )

8 return xtrg

9 D = {}
10 for i = 1, 2, . . . , N do
11 zi ∈ Z , ci ∈ C
12 xsrc

i = Gθ(zi, ci)

13 xtrg
i =T_I2I(xsrc

i , y, yneg, ϵϕ, *)
14 Append (ci,x

src
i ,x

trg
i ) to D.

Algorithm 2: CLIP and pose reconstruction-based
filtering

Input: D, ϵϕrec , ϵϕ, ysrc , y yneg, N , *
Output: Df = {(ci,xsrc

i ,x
trg
i )}Ni=1

1 Df = {}
2 for i = 1, 2, . . . , N do
3 (xsrc

i ,x
trg
i ) ∈ D

4 while True do
5 if dCLIP(x

trg
i , y) > α then

6 xtrg
i =T_I2I(xsrc

i , y, yneg, ϵϕ, *)
7 continue
8 else
9 xrec

i =T_I2I(xsrc
i , ysrc, None, ϵϕrec , *)

10 if dpose(x
rec
i ,x

src
i ) > β then

11 xtrg
i =T_I2I(xsrc

i , y, yneg, ϵϕ, *)
12 continue
13 else
14 break

15 Append (ci,x
src
i ,x

trg
i ) to Df .

generator [15] and a mapping network with 8 hidden layers.
The decoder is constructed as an MLP with a single hidden
layer with soft plus activation and neural rendering [18] of
features [19] using two-pass importance is utilized. The
super-resolution module is implemented with two Style-
GAN2 blocks with modulated convolutions. EG3D’s dis-
criminator is based on a StyleGAN2 discriminator with two
changes, dual discrimination, and camera pose-conditioning.

Algorithm 3: Diversity-preserved domain adapta-
tion

Input: Gθ (pre-trained 3D generator), Df (filtered
dataset), N (Number of data), K (total
number of epochs), A (stochastic non-leaking
augmentation), f , *

Output: Gθ′
1 Gθ′ ← clone(Gθ), Dψ ← Initialize_D
2 for k = 1, 2, . . . ,K do
3 for i = 1, 2, . . . , N do
4 zi ∈ Z , ci ∈ C, vi ∈ V

// Step 1: Update Gθ′

5 Lθ′ADA = −f(Dψ(A(Gθ′(zi, ci)), ci)

6 Lθ′den = ∥σθ′(vi)− σθ′(vi + δvi)∥
7 θ′ ← Update_G(θ′,Lθ′ADA + λdenLden)

// Step 1: Update Dψ

8 Lψ,fake
ADA = f(Dψ(A(Gθ′(zi, ci)), ci)

9 (ci,x
trg
i ) ∈ D

10 Lψ,real
ADA = f(−Dψ(A(x

trg), ci)
11 +λ∥∇Dψ(A(x

trg), ci)∥2)
12 ψ ← Update_D(ψ,Lψ,fake

ADA + Lψ,real
ADA )

C.2. Text-to-image diffusion model

We employ Stable diffusion [21] as our text-to-image dif-
fusion model. It is a latent-based diffusion model and lever-
ages a pre-trained 123M CLIP ViT-L/14 [20] text encoder to
provide the model with the condition of text prompts. The
diffusion model where 860M UNet [22] with the text encoder
are combined is lightweight and enables text-to-image syn-
thesis on GPU at 10GB VRAM. We use Stable diffusion v1.4,
where 977k steps were taken at 512×512 images paired with
text captions from a subset of the LAION-5B [23] database.

For the diffusion sampling method, we choose
PLMS [17], one of the state-of-the-art sampling methods,
accelerating the diffusion process with high quality. We set
the number of inference steps to 50, which enables us to
generate a high-quality image in 1∼2 seconds. We generally
set yneg to None. Also, we generally set the return step tr
and the guidance scale s to 700 and 10, respectively.

C.3. Pose-extractor

As a pose-extractor, we use 6DRepNet [9] that demon-
strates the state-of-the-art performance on BIWI [3] head
pose estimation benchmark. This model predicts a pose vec-
tor on images that includes yaw, pitch, and roll vectors. We
found that this model works well on both FFHQ [14] and
AFHQ Cats [5, 13] images, thus we use the model for both
types of images.
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C.4. Fine-tuning details

We fine-tune the 3D generative models with a batch size
of 20 until the models see 50,000∼200,000 images. We
use a learning rate of 0.002 for both the generator and dis-
criminator. For the discriminator’s input, we blur images,
progressively diminishing the blur degree following [4, 13]
and don’t use style mixing during training. We use ADA
loss combined with R1 regularization with λ = 5. We set
the strength of density regularization λden to 0.25.

C.5. 3D shape visualization

To visualize 3D shapes, we first extract iso-surfaces from
the density field using marching cubes following [4]. Then,
we view the 3D surfaces using UCSF Chimerax [8].

C.6. Text prompts

In the main paper and supplementary, we use a concise
text prompt to refer to each text prompt. Full-text prompts
corresponding to each concise text prompt are summarized
in Table S2.

D. Experimental Details
D.1. Evaluation details
Baselines. In StyleGAN-NADA∗ that is a 3D extended
version of StyleGAN-NADA [20], we fine-tune the 3D gen-
erator Gθ with the directional CLIP loss as follows:

Lθdirection = 1− ⟨∆I,∆T ⟩
∥∆I∥∥∆T∥ , (S1)

where ∆I = ECI (x
gen) − ECI (x

src),∆T = ECT (y
tar) −

ECT (y
src). We implement the loss and optimization part

based on the official StyleGAN-NADA codebase [20].
In HyperDomainNet∗ that is a 3D extended version of

HyperDomainNet [1], in-domain angle consistency loss
Lindomain is added to the directional CLIP loss for preserving
the CLIP similarities among images before and after domain
adaptation.

Lθindomain =

n∑
i,j

(⟨EC
I (x

gen
i ), EC

I (x
gen
j )⟩ − ⟨EC

I (x
src
i ), EC

I (x
src
j )⟩)2,

(S2)

We implement the loss part based on the official HyperDo-
mainNet [1].

KID. Based on the StyleGAN3 [13] codebase implementa-
tion, we calculate Kernel Inception Distance (KID) between
50,000 produced images and 3,000 training images.

User study. For the user study, we collect 9,000 votes from
75 people using a survey platform. We adapt the generator
using each method for four text prompts converting a human

Table S3. High diversity is ensured by sampling more target images
(large n) with our CLIP and pose reconstruction-based filtering.

KID ↓

n = 100 0.024
n = 500 0.015
n = 1000 0.013
n = 3000 0.012

Table S4. Trade-off between image-text correspondence dCLIP and
pose-consistency dpose related to the return step tr .

tr dpose↓ dCLIP↓

500 8.133 0.689
600 23.381 0.672
700 86.516 0.657
800 263.081 0.654
900 327.478 0.652

face to ‘Pixar’, ‘Neanderthal’, ‘Elf’ and ‘Zombie’ styles as
these prompts are used in the previous work, StyleGAN-
NADA [20]. Then, for each text prompt, we sample 30 im-
ages from each generator and put the results of each method
side-by-side. To quantify opinions, we requested users to
rate the perceptual quality on a scale of 1 to 5 for 3 questions
as we introduced in the main text. Finally, we report the
mean of each score for each method, respectively.

Non-adversarial fine-tuning. One generator per instance
is optimized like StyleGAN-NADA* [20], but the difference
is that the guidance is from CLIP image encoding of the tar-
get images that were generated from text-to-image diffusion
models, not CLIP text encoding.

D.2. 3D GAN inversion

For single-view manipulated 3D reconstruction, we invert
a real image into the latent vector w in W+ space. To
achieve this, we obtain the camera parameter c with pre-
trained pose extractor [7, 9] and we initialize w as a mean
of 10,000 ws that are mapped from zs which are randomly
sampled from Normal distribution. Then, we generate a
images with 3D generator and compute a feature distance
between the generated image and the real image using VGG-
19 network. Then, using Adam optimizer [16], we update
the w minimizing the feature distance for 1,000 steps.
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Table S2. List of full text prompts corresponding to each text prompt.

Source data type Concise prompt Full text prompt

FFHQ

Lego "a 3D render of a head of a lego man 3D model"
Greek Statue "a FHD photo of a white Greek statue"

Pixar "a 3D render of a face in Pixar style"
Orc "a FHD photo of a face of an orc in fantasy movie"
Elf "a FHD photo of a face of a beautiful elf with silver hair in live action movie"

Neanderthal "a FHD photo of a face of a neanderthal"
Skeleton "a FHD photo of a face of a skeleton in fantasy movie"
Zombie "a FHD photo of a face of a zombie"

Masquerade "a FHD photo of a face of a person in masquerade"
Peking opera "a FHD photo of face of character in Peking opera with heavy make-up"

Tekken "a 3D render of a Tekken game character"
Ston golem "a 3D render of a stone golem head in fantasy movie"

Devil "a FHD photo of a face of a devil in fantasy movie"
Baby "a FHD photo of a face of a cute baby"

Super Mario "a 3D render of a face of Super Mario"
Hobbit "a FHD photo of a face of Hobbit in Lord of the Rings "
Yoda "a FHD photo of a face of Yoda in Star Wars"

AFHQ Cats

Golden statue "a photo of a face of an anmial golden statue"
Madagascar character "a 3D render of a face of a animal animation character in Madagascar style"

Eevee in Pokemon "a 3D render of a face of an eevee in Pokemon"
Lion in Zootopia style "a 3D render of a face of a lion in Zootopia style"
Cat in Zootopia style "a 3D render of a face of a cat in Zootopia style"

Wolf in Zootopia style "a 3D render of a face of a wolf in Zootopia style"
Fox in Zootopia style "a 3D render of a face of a fox in Zootopia style"

Sheep in Zootopia style "a 3D render of a face of a sheep in Zootopia style"
Pig in Zootopia style "a 3D render of a face of a pig in Zootopia style"

Hamster in Zootopia style "a 3D render of a face of a hamster in Zootopia style"
Racoon in Zootopia style "a 3D render of a face of a racoon in Zootopia style"

Figure S5. Reconstructor successfully converted the target images
into the images in the source domain (Human face) without unreal-
istic artifacts.

Figure S6. Comparison of our one-shot fine-tuning method with
JoJoGAN [6], the state-of-the-art one-shot stylization method. Our
method shows more diverse images with higher quality.

E. Additional Ablation Studies

Number of samples. We also analyzed the diversity, im-
age quality, and training time depending on the number of
samples. According to the quantitative (table) and qualitative
(figures) results in Table S3, more sampled target images
lead to improved image quality and diversity.
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Figure S7. Manipulation to rotation-invariant objects shows high
pose-difference scores.

Trade-off related to return step. The return step tr is one
of the important hyperparameters that determines the degree
of text changes guided by image-to-image manipulation.
We identified that there is a trade-off between image-text
correspondence and pose consistency related to the return
step. According to the quantitative (table) and qualitative
(figures, ‘Human face’→ ‘Yoda’) results in Table S4, higher
return step results in a lower CLIP distance score, but a
higher pose difference score. Thus, we set tr to 600∼700
depending on the text prompts.

Effectiveness of the Reconstructor. Here, we compare
the reconstruction performance between our proposed Re-
constructor and original Stable diffusion. As a text prompt,
the Stable diffusion uses “A photo of a human face” while
the Reconstructor use “A photo of a <s> human face” that
includes a specifier word. Our goal is to translate the manip-
ulated target image back to the image in the source domain.
As shown in Figure S5, the results from the stable diffu-
sion reveal loss of pose information or artificial distortions
because of its highly stochastic nature, whereas the Recon-
structor successfully transforms the target images into the
images in the source domain (Human face).

Effectiveness of one-shot fine-tuning using text-to-
diffusion model. Here, we compare our one-shot fine-
tuning method with the 3D extension of the state-of-the-art
method of one-shot stylization for 2D generative models,
JoJoGAN [6]. We add the camera sampling procedure to the
domain adaptation pipeline in JoJoGAN. As presented in
Figure S6, our one-shot fine-tuning method shows superior
image quality and diversity for 3D generative models while
the results from JoJoGAN severely overfit the target images.

F. Discussion

Limitation. We discovered that maintaining posture infor-
mation in the target images created in Stage 1 is a crucial
requirement for a successful text-driven 3D domain adaption.
There are, however, certain inevitable circumstances that fit
this requirement. The target object being rotation-invariant
or in 2D space is one of the situations when pose information
is lost. As shown in Figure S7, image manipulation of ‘Hu-
man face’→ ‘Cheeseburger’, ‘Human face’→ ‘Soccer ball’
and ‘Human face’→ ‘Bowl’ reports high pose-difference
score, failing domain adaptation with flattened 3D shapes as
described in Figure 11 in the main text.

Also, the supervision of our text-guided domain adapta-
tion depends on the power of text-to-image diffusion models.
So, the limitation of the chosen diffusion models is inherited
in our pipeline. In this work, we adopt Stable diffusion [21].
According to the Stable diffusion model card, a limitation of
the model includes falling short of achieving (1) complete
photorealism, (2) compositionality, (3) proper face gener-
ation, (4) generating images with other languages except
for English, and so on. These limitations can affect our
performance of ours.

Diversity. The diversity of generated samples from the
shifted generator depends on the diversity of the target
dataset. For example, the target images from the text prompt
‘Human face’→ ‘Super Mario’ will be less diverse and more
biased to the specific concept than the target images from
‘Human face’ → ‘Pixar’. Thus, the domain adaptation re-
sults using the text prompt ‘Human face’→ ‘Super Mario’
are also less diverse than the results using ‘Human face’→
‘Pixar’. Also, as analyzed in [12], transfer learning of the
generative models succeeds only when the target dataset has
comparable or less diverse than the source dataset.

Social Impacts DATID-3D enables the generation of high-
quality 3D samples in the text-guided domain as well as
single-shot manipulated 3D reconstruction without artistic
skills. Nevertheless, these can be applied maliciously to pro-
duce visuals that make people feel unpleasant or aggressive.
This involves creating images that people are likely to find
upsetting, frightening, or insulting, as well as information
that reinforces stereotypes from the past or present. Accord-
ing to the Stable diffusion [21] model card, a misuse of the
model includes (1) creating inaccurate, hurtful, or otherwise
offensive depictions of individuals, their environment, cul-
tures, and religions, (2) intentionally spreading stereotypical
portrayals or discriminatory material, (3) impersonating in-
dividuals without their consent, (4) sexual content without
viewer’s permission, (5) depictions of horrifying violence
and gore and so on. We thus strongly urge people to use our
approach wisely and for the proper intended goals.
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