
A Expanding GMM from Conditional Moment Restriction

In order to show what connectivity exists between GMM and moment restriction, we start from
Equation (1) of conditional moment restriction in our manuscript as:

ET [ψT (h) | Z] =
∫
t∈T

ψT (h)dP(T = t | Z) = 0, (1)

To generate infinite moments by the test function g regarding numerous case of instrumental vari-
ables, GMM selects a moment with the hypothesis model and test function, which can be written
as:

m(h, g) = EZ,T [ψT (h) · g(Z)]. (2)

Here, this moment can be expressed with conditional moment restriction, then it satisfies zero as
follows:

EZ,T [ψT (h) · g(Z)] =
∫
z∈Z,t∈T

ψt(h) · g(z)dP(Z = z, T = t),

=

∫
z∈Z,t∈T

ψt(h)dP(T = t | Z = z) · g(z)dP(Z = z)

=

∫
z∈Z

ET [ψT (h) | Z = z] · g(z)dP(Z = z)

= EZ [ET [ψT (h) | Z]︸ ︷︷ ︸
conditional moment

·g(Z)]

= EZ [0 · g(Z)] (∵ Eq. (1))

= 0.

(3)

From this proof, we can infer that once GMM achieves a reduction of moment magnitude, then it
successfully expands conditional moment restriction to perform infinite moment restriction, where
the intractable infinite number of moments generated by g is replaced with (infinite-dimensional)
non-parametric test function g such as DNNs.
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B Realizing Generalization Gap

We employ Taylor Expansion and Identity mapping to realize the generalization gap ϕ(g∗, g) as
described in Equation (8) in our manuscript. By using them, we elaborate the equation to feasibly
calculate the generalization gap.

B.1 Taylor Expansion

When we make use of AMR-GMM for adversarial instrumental variable regression, there happens
generalization gap between ideal m(h∗, g∗) and empirical moments m(h∗, g) for test functions due
to the absence of regularizing the direction for learning a test function on maximum moment restric-
tion. Here, the generalization gap can be written as follows:

ϕ(g∗, g) = m(h∗, g∗)−m(h∗, g), (4)

where we suppose the empirical moment has sufficiently converged generalized residual function
ψΩ
T ′|Z(h

∗) to a small constant value from the best estimator h∗, which can be written as:

m(h∗, g) = EZ [ψ
Ω
T ′|Z(h

∗) · (Ω ◦ g)(Z)]. (5)

Note that, the generalized residual function ψΩ
T ′|Z(h

∗) of the ideal moments m(h∗, g∗) is either a
small constant value. From their assumption of moments, we can indicate the generalization gap of
Eq. (5) with simple subtraction terms with inner product on the small constant of the generalized
residual function, which can be written as follows:

ϕ(g∗, g) = EZ [ψ
Ω
T ′|Z(h

∗) · {(Ω ◦ g∗)(Z)− (Ω ◦ g)(Z)}]. (6)

In this spot, we unpack the log-likelihood function Ω by using Taylor Expansion that it satisfies:

Ω(ω +∆ω) ≈ Ω(ω) + Ω′(ω)⊗∆ω, (7)

with a vector-valued function Ω : RH×W×C → RK (class number K) and its derivation function
Ω′ : RH×W×C → RK×HWC . In addition, the operator ⊗ denotes dimension squeeze (i.e, vec-
torize) and multiplication due to its tensor dimension of ∆ω ∈ RH×W×C such that it satisfies
a⊗ b := a×Vec(b). Then, Taylor Expansion of the log-likelihood function Ω in Eq. (7) can be also
applied to a simple setup ω = 0 for the following equation:

Ω(0 +∆ω) ≈ Ω(ω = 0) + Ω′(ω = 0)⊗∆ω. (8)

Eventually, the generalization gap can be possibly approximated by the following equation:

ϕ(g∗, g) = EZ [ψ
Ω
T ′|Z(h

∗) · {(Ω ◦ g∗)(Z)− (Ω ◦ g)(Z)}]

= EZ [ψ
Ω
T ′|Z(h

∗) · {Ω(ω = 0) + Ω′(ω = 0)⊗ g∗(Z)︸ ︷︷ ︸
(Ω◦g∗)(Z)

− (Ω(ω = 0) + Ω′(ω = 0)⊗ g(Z))︸ ︷︷ ︸
(Ω◦g)(Z)

}]

= EZ [ψ
Ω
T ′|Z(h

∗) · {Ω′(ω = 0)⊗ (g∗(Z)− g(Z))}].
(9)
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B.2 Identity Mapping

However, once we directly compute this equation, we will take a striking computational burden from
the repeated procedure of tensor derivation Ω′ and its dimension squeeze and multiplication ⊗. To
be specific, computing the generalization gap in Eq. (9) naively induces a computational complexity
O(K2H2W 2C2), at least, per one iteration.

Therefore, we should practically compute the generalization gap and get its fast convergence. Here,
localized Rademacher enables the operator ⊗ and the two weighted factors (ψΩ, Ω′) for g∗(Z) −
g(Z) to be ignored in computing the generalization gap, and it allows the generalization gap to be
uniform bound with the convergence rate λ, such that

|ϕ(g∗, g)| ≈
√
λ|EZ [g

∗(Z)− g(Z)]|, (10)

where its complexity is even O(1) to our satisfaction. Then, we use an elementary algebraic trick
with identity mapping I to approximate tight upper bound of the generalization gap by triangle
inequality for its feasible computation within reach as follows:

|ϕ(g∗, g)| = |m(h∗, g∗)−m(h∗, g)| = |m(h∗, g∗)−m(h∗, I)︸ ︷︷ ︸
ϕ(g∗,I)

+m(h∗, I)−m(h∗, g)︸ ︷︷ ︸
ϕ(I,g)

|

≤ |ϕ(g∗, I)|+ |ϕ(I, g)| ≈
√
λ|EZ [g

∗(Z)− Z]|+
√
λ|EZ [Z − g(Z)]|,

(11)

where |ϕ(g∗, I)| in the upper bound is constant value with respect to g. Once we subtract |ϕ(g∗, I)|
to the above inequality, we can get the supremum value of |ϕ(g∗, g)| − |ϕ(g∗, I)|, as follows:

sup
g∈G
|ϕ(g∗, g)| − |ϕ(g∗, I)| ≤ sup

g∈G
|ϕ(I, g)|. (12)

Here, we suppose that the absence of regularizing test function forges a significant difference be-
tween a feature variation (i.e, instrument) Z and its counterfactuals (i.e, test function) g(Z). This
postulation implies that the output of test function strays from the possible feature bound and the
infimum value infg∈G |ϕ(I, g)| ≈

√
λ|EZ [Z − g(Z)]| becomes large enough, thus we can realign

Eq. (12) with total range of |ϕ(I, g)|, which can be written as follows:

sup
g∈G
|ϕ(g∗, g)| − |ϕ(g∗, I)| ≤ inf

g∈G
|ϕ(I, g)| ≤ |ϕ(I, g)| ≤ sup

g∈G
|ϕ(I, g)|. (13)

From this inequality, we can show the existence of the triangle inequality supg∈G |ϕ(g∗, g)| ≤
|ϕ(g∗, I)| + infg∈G |ϕ(I, g)| described in our manuscript. In addition, as our manuscript has al-
ready explained the connection between the generalization gap and Rademacher complexity, such
that supg∈G |ϕ(g∗, g)| = 2bR(G), we eventually get an indirect method to reduce Rademacher com-
plexity once minimizing |ϕ(I, g)| efforlessly. Then, we practically optimize the squared |ϕ(I, g)|2,
namely localized Rademacher regularizer, together with the main objective of AMR-GMM to main-
tain a low generalization gap for getting rich test function, which can be written as follows:

min
h∈H

max
g∈G

EZ [ψ
Ω
T ′|Z(h) · (Ω ◦ g)(Z)]− λ|EZ [Z − g(Z)]|2. (14)

This ensures the successful achievement of AMR-GMM where the output of test function does
not deviate appreciably from the feature variation Z, so that it enables to find out the worst-case
counterfactuals within adversarial feature bound. Appendix B.3 describes the triangle inequality
clearly with figure and delineates how sufficiently rich test function works, through the lens of
empirical evidence by conducting AMR-GMM without the localized Rademacher regularizer.
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B.3 Rich Test Function by Rademacher Complexity

So far, we have verified the realization of the generalization gap on the triangle inequality
supg∈G |ϕ(g∗, g)| ≤ |ϕ(g∗, I)| + infg∈G |ϕ(I, g)|. To clearly understand it, we then transform
representation domain of the triangle inequality to feature and counterfactual space as below figure.

𝐹𝐹adv

𝐹𝐹natural

𝐹𝐹CF

𝐹𝐹CF

Feature Space Counterfactual Space Rademacher Distance

𝐹𝐹adv

𝐹𝐹natural

𝐹𝐹CF∗

𝐹𝐹CF∗

(a) AMR-GMM w/o Regularizer (b) AMR-GMM w/ Regularizer

Figure 1: Representing feature space, counterfactual space, and their space interval (Rademacher
Distance) according to whether localized Rademacher regularizer is applied in AMR-GMM.

From Fig. 1, we can draw three factors |ϕ(g∗, g)|, |ϕ(g∗, I)|, |ϕ(I, g)| of the triangle inequality to√
λ|EZ [F

∗
CF−FCF]|,

√
λ|EZ [F

∗
CF−Fadv]|,

√
λ|EZ [Fadv−FCF]| and then the inequality for the given

instrument can be obviously shown to: supFCF|Z |F
∗
CF−FCF| ≤ |F ∗

CF−Fadv|+infFCF|Z |Fadv−FCF|.
Therefore, it becomes a more intuitively understandable formulation to explain their relationship.

Here, we newly define |Fadv − FCF| = |Z − g(Z)| as Rademacher Distance (red dotted lines) mea-
suring space interval between feature space and its counterfactual space. These red dotted lines are
highly related to the localized Rademacher regularizer |ϕ(I, g)|2 ≈ λ|EZ [Z − g(Z)]|2 as explained
in Appendix B.2. Consequently, using this regularizer makes their space interval close compared to
not using it, thereby pushing the conterfactual space towards possible feature space.

C Statistical Distance for Causal Inversion

Table 1: Measuring distance metric (unit: m) of KL divergence DKL, between the prediction of
causal features and causal inversion, natural input, and adversarial example of which perturbation
budget varies on small and large dataset. The elements below δcausal denote maximum magnitude of
causal perturbation budget chosen by a heuristic search to estimate causal features.

Network CIFAR-10 SVHN Tiny-ImageNet

δcausal Inversion Natural Adversary δcausal Inversion Natural Adversary δcausal Inversion Natural Adversary

VGG 8/255 6.3 55.5 586.0 4/255 4.7 25.6 1011.3 1/255 35.8 83.4 800.4

ResNet 4/255 2.2 16.5 549.5 1/255 2.1 11.6 768.4 .5/255 35.1 80.8 762.5

WRN 2/255 1.2 7.2 671.8 1/255 1.6 6.0 937.9 .5/255 33.4 57.5 1062.1

Table 1 shows the statistical distance away from confidence score for model prediction of causal
features, compared with that of causal inversion, natural input, and adversarial examples. It implies
how well the generated causal inversion represents causal features on feasible bound so that networks
themselves enable to exhibit the causal features. In other words, it does not harm causal prediction
much according to the smaller statistical distance in Table 1, thus we employ it to effectively inject
causal features into the defense networks without direct aid of hypothesis model.
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D Algorithm Detail of AMR-GMM
Algorithm 1 Adversarial Moment Restriction based Generalized Method of Moments (AMR-
GMM)
Require: Data Samples S, Pre-trained Network f , Log-likelihood Function Ω

1: Initialize parameters θh and θg of hypothesis model h and test function g
2: for (X,Y ) ∼ S do
3: Xϵ ← Attack(X,Y ) ▷ PGD Attack
4: Fadv ← fl(Xϵ), Fnatural ← fl(X) ▷ Adversarial/Natural Features
5: Z ← Fadv − Fnatural ▷ Instrumental Variables
6: T ′ ← g(Z), Y ′ ← log Y ▷ Counterfactual Treatment and Pseudo Target Label
7: ψΩ

T ′|Z(h)← Y ′ − (Ω ◦ h)(T ′) ▷ Generalized Residual Function for AMR
8: LAMR-GMM(θh, θg)← ψΩ

T ′|Z(h) · (Ω ◦ g)(Z) ▷ Main objective of AMR-GMM
9: LReg(θg)← λ|Z − g(Z)|2 ▷ Localized Rademacher Regularizer

10: θg ← θg +α ∂
∂θg

(LAMR-GMM−LReg) ▷ Update θg (α: lr) for Maximizing AMR-GMM Loss

11: θh ← θh − α ∂
∂θh
LAMR-GMM ▷ Update θh (α: lr) for Minimizing AMR-GMM Loss

12: end for

Both hypothesis model and test function comprise a bundle of the convolutional layers as a simple
CNN structure, trained on AdamW with a learning rate of α = 10−4 in 10 epochs, where we set the
convergence rate λ = 1. For ImageNet, we train it with perturbation budget 2/255 and its 2.5 times
step size using fast adversarial training based on FGSM. More details are described in our code at
supplementary material.

E Algorithm Detail of CAFE
Algorithm 2 CAusal FEatures (CAFE)
Require: Data Samples S, Pre-trained Network f and Hypothesis Model h, Defense Loss Ldefense

1: for (X,Y ) ∼ S do
2: Xϵ ← Attack(X,Y ) ▷ PGD Attack
3: Fadv ← fl(Xϵ), Fnatural ← fl(X) ▷ Adversarial/Natural Features
4: Z ← Fadv − Fnatural ▷ Instrumental Variables
5: FAC ← Fnatural + h(Z) ▷ Calculating Causal Features
6: δcausal = argmin∥δ∥∞≤γ DKL (fl+(FAC) || f(Xδ)) ▷ Causal Perturbation
7: Xcausal ← X + δcausal ▷ Causal Inversion
8: F̂AC ← fl(Xcausal) ▷ Estimated Causal Features
9: LCAFE(θf )← LDefense +DKL(fl+(F̂AC) || fl+(Fadv)) ▷ CAFE Loss with parameter θf of f

10: θf ← θf − α ∂
∂θf
LCAFE ▷ Update θf (α: lr) for Minimizing CAFE Loss

11: end for

As described in line 9, we readily add a causal regularizer DKL to pre-defined defense loss LDefense
and train all networks from scratch to show the true effectiveness of CAFE. Note that, the number
of steps for causal inversion is each 10 for CIFAR-10, SVHN and 3 (regarding speed) for Tiny-
ImageNet. More details are either described in our code at supplementary material.
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F Efficacy of CAusal FEatures (CAFE)

F.1 CAFE without Causal Inversion (CAFE†)

We experiment ablation study of CAFE without causal inversion to show the effectiveness of the
causal inversion for CAFE. In Algorithm 2, we first remove the procedures of getting the causal
inversion and the estimated causal features in line 6-8, and we name it CAusal FEatures without
causal inversion (CAFE†) of which algorithm is explained in the following Algorithm 3.

Algorithm 3 CAusal FEatures without Causal Inversion (CAFE†)
Require: Data Samples S, Pre-trained Network f and Hypothesis Model h, Defense Loss Ldefense

1: for (X,Y ) ∼ S do
2: Xϵ ← Attack(X,Y ) ▷ PGD Attack
3: Fadv ← fl(Xϵ), Fnatural ← fl(X) ▷ Adversarial/Natural Features
4: Z ← Fadv − Fnatural ▷ Instrumental Variables
5: FAC ← Fnatural + h(Z) ▷ Calculating Causal Features
6: LCAFE† ← LDefense +DKL(fl+(FAC) || fl+(Fadv)) ▷ CAFE† Loss
7: θf ← θf − α ∂

∂θf
LCAFE† ▷ Update θf (α: lr)

8: end for

Table 2: Measuring adversarial robustness of CAFE† not using causal inversion (Algorithm 3)
and comparing the robustness with original CAFE (Algorithm 2) on five defense baselines: ADV,
TRADES, MART, AWP, HELP, trained with VGG-16 for CIFAR-10, SVHN, Tiny-ImageNet under
six attack modes: FGSM, PGD, CW∞, AP, DLR, AA.

Method CIFAR-10 SVHN Tiny-ImageNet

Natural FGSM PGD CW∞ AP DLR AA Natural FGSM PGD CW∞ AP DLR AA Natural FGSM PGD CW∞ AP DLR AA

ADV 78.5 49.8 44.8 42.6 43.2 42.9 40.7 91.9 64.8 52.1 48.9 48.0 48.5 45.2 53.2 25.3 21.5 21.0 20.2 20.8 19.6
ADVCAFE† 79.5 50.6 45.0 43.8 43.5 44.1 41.7 92.0 64.9 52.0 49.5 47.6 48.7 45.4 53.7 25.4 21.8 21.2 20.6 21.1 20.0
ADVCAFE 78.4 52.2 47.9 44.1 46.4 44.5 42.7 91.5 67.0 55.3 50.0 51.3 49.6 46.1 52.6 26.0 22.8 22.1 21.8 22.0 21.0
∆CAFE†(%) 1.3 1.5 0.4 3.0 0.8 2.6 2.4 0.2 0.2 -0.2 1.2 -0.8 0.5 0.4 0.9 0.6 1.7 1.2 2.2 1.5 1.8
∆CAFE(%) -0.1 4.8 7.1 3.7 7.5 3.8 4.9 -0.4 3.4 6.1 2.2 6.8 2.3 1.9 -1.2 3.0 6.4 5.2 7.8 5.6 6.9
TRADES 79.5 50.4 45.7 43.2 44.4 42.9 41.8 91.9 66.4 53.6 49.1 49.1 47.7 45.2 52.8 25.9 22.5 21.9 21.5 21.8 20.7
TRADESCAFE† 78.2 50.0 45.1 43.5 43.9 43.6 41.9 90.6 64.1 52.8 49.5 48.5 48.8 45.9 53.5 25.5 22.1 21.5 20.9 21.5 20.3
TRADESCAFE 77.0 51.6 47.9 44.0 47.0 43.9 42.7 90.3 67.8 56.1 50.0 53.6 49.1 47.5 52.1 26.5 23.6 22.6 22.5 22.6 21.6
∆CAFE†(%) -1.7 -0.8 -1.4 0.5 -1.0 1.6 0.4 -1.4 -3.4 -1.5 1.0 -1.1 2.2 1.5 1.3 -1.9 -1.6 -1.4 -3.0 -1.4 -2.0
∆CAFE(%) -3.1 2.2 4.8 1.8 5.8 2.3 2.3 -1.8 2.1 4.6 1.9 9.3 2.9 5.0 -1.3 2.2 5.2 3.6 4.6 3.7 4.2
MART 79.7 52.4 47.2 43.4 45.5 43.8 42.0 92.6 66.6 54.2 47.9 49.6 47.1 44.4 53.1 25.0 21.5 21.2 20.4 21.0 19.9
MARTCAFE† 79.4 51.7 45.8 43.3 44.1 43.7 41.6 92.0 65.8 53.1 49.1 48.2 48.2 44.9 53.5 25.4 21.8 21.3 20.7 21.3 20.2
MARTCAFE 78.3 54.2 49.7 43.9 48.1 44.5 42.7 91.3 67.6 57.3 49.5 54.2 48.3 46.4 53.0 25.6 22.3 21.6 21.3 21.5 20.5
∆CAFE†(%) -0.5 -1.3 -3.0 -0.2 -3.2 -0.3 -0.8 -0.6 -1.2 -2.0 2.3 -2.8 2.4 1.1 0.7 1.5 1.7 0.9 1.7 1.5 1.5
∆CAFE(%) -1.8 3.4 5.1 1.2 5.6 1.6 1.9 -1.4 1.4 5.9 3.3 9.2 2.7 4.6 -0.2 2.4 4.0 1.8 4.3 2.5 3.1
AWP 78.0 51.7 48.2 43.5 47.2 43.4 42.6 90.8 65.5 56.6 50.4 54.0 49.7 48.6 52.6 28.0 25.7 23.6 24.8 23.5 22.8
AWPCAFE† 76.3 50.9 47.0 43.8 45.9 44.0 42.4 83.2 58.0 51.8 49.0 49.8 48.7 47.0 52.5 26.5 23.4 22.6 22.4 22.5 21.6
AWPCAFE 77.4 54.8 51.4 44.2 50.2 44.9 43.5 91.9 67.9 58.6 51.2 55.9 51.1 49.7 52.9 28.8 26.4 24.2 25.6 24.1 23.4
∆CAFE†(%) -2.2 -1.6 -2.4 0.6 -2.7 1.5 -0.4 -8.3 -11.4 -8.6 -2.9 -7.9 -2.0 -3.3 -0.2 -5.4 -8.7 -4.0 -9.6 -4.3 -5.3
∆CAFE(%) -0.8 5.8 6.8 1.7 6.4 3.6 2.2 1.2 3.8 3.4 1.6 3.6 2.7 2.3 0.6 3.0 2.7 2.7 3.3 2.5 2.9
HELP 77.4 51.8 48.3 43.9 47.3 43.9 42.9 91.2 65.8 56.6 50.9 53.9 50.2 48.8 53.0 28.3 25.9 23.9 25.1 23.8 23.1
HELPCAFE† 76.2 51.0 47.2 43.9 46.1 44.2 42.7 87.6 61.7 53.7 49.6 51.3 49.2 47.3 52.9 27.0 24.1 23.0 23.2 23.0 22.1
HELPCAFE 75.6 54.4 51.4 44.6 50.4 44.8 43.7 91.5 67.3 58.5 51.6 56.2 51.4 50.0 52.6 29.4 27.1 24.7 26.4 24.4 23.9
∆CAFE†(%) -1.6 -1.6 -2.2 0.0 -2.4 0.9 -0.4 -4.0 -6.3 -5.1 -2.4 -5.0 -2.0 -3.0 -0.1 -4.4 -7.0 -3.8 -7.8 -3.2 -4.2
∆CAFE(%) -2.3 5.0 6.4 1.5 6.6 2.2 1.8 0.3 2.3 3.3 1.4 4.2 2.4 2.5 -0.8 3.9 4.7 3.1 5.0 2.4 3.5

Table 2 shows that CAFE without causal inversion (CAFE†) cannot further enhance adversarial
robustness of networks compared with that of original CAFE with causal inversion, and even CAFE†

has mostly worse robustness than its corresponding baselines. Due to its deviated prediction, we
introduce a causal inversion that helps to estimate causal features and fit their prediction. We can
then enlighten causal inversion has a remarkable effect to elevate robustness in all of the defense
networks and conclude the effectiveness of the CAFE comes from the causal inversion.

F.2 Power of Test Function

As described in Section 3.1 (Revisiting Non-parametric IV regression), the test function is responsi-
ble for generating infinite moment restrictions. In practical, however, it is impossible to handle the
such infinite moments. To deal with the analogue limitation, the adversarial learning [7, 41] utilizes
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test function that provokes the upper-bound of the moment m by finding the extreme part of IV,
then minimizes m with hypothesis model to obtain more robustified one from counterfactuals. It is
highly aligned with our problem setup, because our main goal is either to acquire hypothesis model
extracting causal features, despite given the possible worst-case variation of IV. From the power of
test function, a lot of works: AGMM [41], DeepGMM [7], AGMM+RKHS [20], MMR-IV [44]
have employed min-max optimization for performing IV regression, and it has been empirically
verified that they greatly outperform the constraint optimization that does not fulfill min-max op-
timization with a test function: RandomForest, DirectNN, GMM [28], 2SLS [71], DeepIV [29],
KernelIV [61]. Beyond the roles of our hypothesis model and test function, our proposed method
(AMR-GMM) also follows recent IV regression methods utilizing the min-max optimization.

CIFAR-10 Tiny-ImageNet

Method Natural AA Natural AA

ADV 84.3 45.6 60.9 23.9
ADVCAFE\g 84.6 47.1 60.3 23.7
ADVCAFE 85.7 49.5 60.6 25.4

Table 3: Ablation study of test function g

For further verification, we train hypothesis model without test function and inoculate causal features
acquired from the hypothesis model to DNNs where we use minimizing optimization instead of min-
max one: ADVCAFE\g to identify its regression effect. Then, we observe the experimental results
are significantly degraded in ADVCAFE for CIFAR-10 and Tiny-ImageNet each with WRN-34-10.
From these results, we can say that min-max optimization fits in our problem setup.

F.3 Stability of CAFE

In Appendix E, we noted that our hypothesis model and test function were trained for 10 epochs on
CIFAR-10 and SVHN and 3 epochs on Tiny-ImageNet and it was deemed sufficient convergence,
as observed through empirical evidence.

CIFAR-10 SVHN Tiny-ImageNet

Networks Natural AA Natural AA Natural AA

VGG-16 0.027 0.084 0.005 0.027 0.058 0.030
ResNet-18 0.015 0.028 0.003 0.021 0.039 0.028
WRN-34-10 0.007 0.021 0.001 0.019 0.018 0.024

Table 4: Standard deviations of CAFE for Stability

To verify the stability of CAFE, we experiment standard deviation results of CAFE for the accuracy
(%) of adversarial robustness under 20 repetitions on the all datasets with all networks for ADVCAFE.
This table implies that CAFE has either consistent stability of the performances, aligned with that
of acquiring causal estimator h in the concept of Lewis et al. [41] with Set Identification [14] and
Lipschitz [6] to finding ϵ-equilibrium of the zero-sum game.
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