A Expanding GMM from Conditional Moment Restriction

In order to show what connectivity exists between GMM and moment restriction, we start from
Equation (1) of conditional moment restriction in our manuscript as:

Er[yr(h) | Z] = or Yr(W)dP(T =t | Z) =0, (1)

To generate infinite moments by the test function g regarding numerous case of instrumental vari-
ables, GMM selects a moment with the hypothesis model and test function, which can be written
as:

m(h,g) = Ezr[r(h)-9(Z)]. 2

Here, this moment can be expressed with conditional moment restriction, then it satisfies zero as
follows:

Ezzlir(h) - 9(2)] = / bi(h) - g()AB(Z = 2, T = 1),

zeZ,teT

- /eZ teT V(W) dP(T' =1t | Z = z) - g(2)dP(Z = 2)

N /zez Er[yr(h) | Z =z]- g(2)dP(Z = z) (3)
=Ez[Er[yr(h) | Z]-9(Z)]
—

conditional moment

=Ez[0-9(Z)] (. Eq.(1)

From this proof, we can infer that once GMM achieves a reduction of moment magnitude, then it
successfully expands conditional moment restriction to perform infinite moment restriction, where
the intractable infinite number of moments generated by g is replaced with (infinite-dimensional)
non-parametric test function g such as DNNs.



B Realizing Generalization Gap

We employ Taylor Expansion and Identity mapping to realize the generalization gap ¢(g*,g) as
described in Equation (8) in our manuscript. By using them, we elaborate the equation to feasibly
calculate the generalization gap.

B.1 Taylor Expansion
When we make use of AMR-GMM for adversarial instrumental variable regression, there happens
generalization gap between ideal m(h*, g*) and empirical moments m(h*, g) for test functions due

to the absence of regularizing the direction for learning a test function on maximum moment restric-
tion. Here, the generalization gap can be written as follows:

(9", 9) = m(h*,g"*) — m(h",g), 4)

where we suppose the empirical moment has sufficiently converged generalized residual function
w%‘ »(h*) to a small constant value from the best estimator ~*, which can be written as:

m(h*,g9) = Ez[77(h") - (20 9)(2)]. )
Note that, the generalized residual function 1&%,‘ ,(h*) of the ideal moments m(h*, g*) is either a
small constant value. From their assumption of moments, we can indicate the generalization gap of

Eq. (5) with simple subtraction terms with inner product on the small constant of the generalized
residual function, which can be written as follows:

$g",9) = Ez [V (h") - {0 g")(2) — (2o 9)(2)}]. (6)

In this spot, we unpack the log-likelihood function €2 by using Taylor Expansion that it satisfies:

Qw + Aw) ~ Qw) + Q' (w) ® Aw, 7

with a vector-valued function Q : RT*WxC _ RK (class number K) and its derivation function
Q : REXWXC _y REXHWC 1j addition, the operator ® denotes dimension squeeze (i.e, vec-
torize) and multiplication due to its tensor dimension of Aw € RTXWXC gyuch that it satisfies
a®b := a x Vec(b). Then, Taylor Expansion of the log-likelihood function 2 in Eq. (7) can be also
applied to a simple setup w = 0 for the following equation:

Q0+ Aw) ~ Qw = 0) + ' (w = 0) ® Aw. ®)

Eventually, the generalization gap can be possibly approximated by the following equation:

39", 9) = Bz 7 (h*) - {(Q0 g")(Z) — (20 g)(2)}]

=Ez[U7 (1) {Qw=0)+ Q' (w=0)® ¢"(2) — (2w =0) + (v =0)® g(Z))}]

(Q209%)(2) (Q09)(2)

=Ez[v7z(0") {Q (W =0)® (4°(2) — 9(2))}].
(©))



B.2 Identity Mapping

However, once we directly compute this equation, we will take a striking computational burden from
the repeated procedure of tensor derivation €2’ and its dimension squeeze and multiplication ®. To
be specific, computing the generalization gap in Eq. (9) naively induces a computational complexity
O(K?H?*W?2(?), at least, per one iteration.

Therefore, we should practically compute the generalization gap and get its fast convergence. Here,
localized Rademacher enables the operator @ and the two weighted factors (¢, ') for g*(Z) —
g(Z) to be ignored in computing the generalization gap, and it allows the generalization gap to be
uniform bound with the convergence rate A, such that

16(9%, 9)| = VAEz[g*(Z) — g(2)]l, (10)

where its complexity is even O(1) to our satisfaction. Then, we use an elementary algebraic trick
with identity mapping Z to approximate tight upper bound of the generalization gap by triangle
inequality for its feasible computation within reach as follows:

697 9)| = [m(h*, g7) = m(h*, g)| = [m(h", g") —m(h",Z) + m(h",T) — m(h", g) |
$(9°.1) $(Z,9)

Y
< 19(g", )| +16(Z, 9)| = VAEz[g™(2) = Z]| + VAEz[Z — g(2)],

where |¢(g*,Z)| in the upper bound is constant value with respect to g. Once we subtract |¢(g*,Z)]
to the above inequality, we can get the supremum value of |p(g*, g)| — |#(g*, Z)|, as follows:

sup |¢(g", g)| — [¢(9", T)| < sup [$(Z, g)|. (12)
geg geg

Here, we suppose that the absence of regularizing test function forges a significant difference be-
tween a feature variation (i.e, instrument) Z and its counterfactuals (i.e, test function) g(Z). This
postulation implies that the output of test function strays from the possible feature bound and the
infimum value inf,cg |#(Z, 9)| =~ VAEZ[Z — g(Z)]| becomes large enough, thus we can realign
Eq. (12) with total range of |¢(Z, g)|, which can be written as follows:

sup [¢(g™, 9)| — lo(g™, I)| < inf [¢(Z, g)| < [¢(Z, g)| < sup|é(Z,g)| (13)
g€eg 9€g geg

From this inequality, we can show the existence of the triangle inequality sup,.¢[¢(g",9)| <

l6(g*, )| + infyeg |¢(Z, g)| described in our manuscript. In addition, as our manuscript has al-
ready explained the connection between the generalization gap and Rademacher complexity, such
that sup,cg [¢(9", 9)| = 26R(G), we eventually get an indirect method to reduce Rademacher com-
plexity once minimizing |¢(Z, g)| efforlessly. Then, we practically optimize the squared |¢(Z, g)|?,
namely localized Rademacher regularizer, together with the main objective of AMR-GMM to main-
tain a low generalization gap for getting rich test function, which can be written as follows:

min mex Ez [ 7(h) - (20 9)(Z)] — NEz[Z — g(2)]. (14)

This ensures the successful achievement of AMR-GMM where the output of test function does
not deviate appreciably from the feature variation Z, so that it enables to find out the worst-case
counterfactuals within adversarial feature bound. Appendix B.3 describes the triangle inequality
clearly with figure and delineates how sufficiently rich test function works, through the lens of
empirical evidence by conducting AMR-GMM without the localized Rademacher regularizer.



B.3 Rich Test Function by Rademacher Complexity

So far, we have verified the realization of the generalization gap on the triangle inequality
sup,eg |9(9%,9)| < |@(g*,Z)| + infyeg [¢(Z,g)|- To clearly understand it, we then transform
representation domain of the triangle inequality to feature and counterfactual space as below figure.
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Figure 1: Representing feature space, counterfactual space, and their space interval (Rademacher
Distance) according to whether localized Rademacher regularizer is applied in AMR-GMM.

From Fig. 1, we can draw three factors |¢(g*, g)l, |¢(g*,Z)|, |¢(Z, g)| of the triangle inequality to
VANEz[Fes — Ferl|, VAEz[Fég — Fay]|s VAEz[Fagy — Fer]| and then the inequality for the given
instrument can be obviously shown to: supp. |z | Fég — For| < |F&g — Faay| +inf g 7 | Fagy — FeEl-
Therefore, it becomes a more intuitively understandable formulation to explain their relationship.

Here, we newly define |Fyqy — Fcr| = |Z — g(Z)| as Rademacher Distance (red dotted lines) mea-
suring space interval between feature space and its counterfactual space. These red dotted lines are
highly related to the localized Rademacher regularizer |¢(Z, g)|> ~ A\|Ez[Z — g(Z)]|? as explained
in Appendix B.2. Consequently, using this regularizer makes their space interval close compared to
not using it, thereby pushing the conterfactual space towards possible feature space.

C Statistical Distance for Causal Inversion

Table 1: Measuring distance metric (unit: m) of KL divergence Dgy , between the prediction of
causal features and causal inversion, natural input, and adversarial example of which perturbation
budget varies on small and large dataset. The elements below d,us.1 denote maximum magnitude of
causal perturbation budget chosen by a heuristic search to estimate causal features.

Network CIFAR-10 SVHN Tiny-ImageNet
Ocausat  Inversion Natural Adversary deausar Inversion Natural Adversary Ocausa Inversion Natural Adversary
VGG  8/255 6.3 55.5 586.0  4/255 4.7 25.6 1011.3 1/255 35.8 83.4 800.4
ResNet  4/255 2.2 16.5 549.5 1/255 2.1 11.6 768.4 .5/255 351 80.8 762.5
WRN  2/255 1.2 7.2 671.8 1/255 1.6 6.0 937.9 .5/255 334 57.5 1062.1

Table 1 shows the statistical distance away from confidence score for model prediction of causal
features, compared with that of causal inversion, natural input, and adversarial examples. It implies
how well the generated causal inversion represents causal features on feasible bound so that networks
themselves enable to exhibit the causal features. In other words, it does not harm causal prediction
much according to the smaller statistical distance in Table 1, thus we employ it to effectively inject
causal features into the defense networks without direct aid of hypothesis model.



D Algorithm Detail of AMR-GMM

Algorithm 1 Adversarial Moment Restriction based Generalized Method of Moments (AMR-
GMM)
Require: Data Samples S, Pre-trained Network f, Log-likelihood Function {2

1: Initialize parameters 6}, and ¢, of hypothesis model h and test function g

2: for (X,Y) ~Sdo

3: X, + Attack(X,Y) > PGD Attack
4: Fav + fi(Xe), Frawra < f1(X) > Adversarial/Natural Features
5: 7 + Fiaav — Frawral > Instrumental Variables
6: T «+g(Z2),Y < logY > Counterfactual Treatment and Pseudo Target Label
7: w%l 2(h) <Y —(Qoh)(T") > Generalized Residual Function for AMR
8: ﬁAMR-GMM(Gha 99) — ¢¥,‘Z(h) . (Q o) g)(Z) > Main objective of AMR-GMM
9: Lree(04) + NZ — g(Z)? > Localized Rademacher Regularizer
10: Oy 4 0y + azr-(Lamr-omm — Lreg) & Update 64 (c: Ir) for Maximizing AMR-GMM Loss
g
11: 0y, < 0), — a%ﬁAMR_GMM > Update 6}, (a: Ir) for Minimizing AMR-GMM Loss
12: end for

Both hypothesis model and test function comprise a bundle of the convolutional layers as a simple
CNN structure, trained on AdamW with a learning rate of o = 10~%in 10 epochs, where we set the
convergence rate A = 1. For ImageNet, we train it with perturbation budget 2/255 and its 2.5 times
step size using fast adversarial training based on FGSM. More details are described in our code at
supplementary material.

E Algorithm Detail of CAFE

Algorithm 2 CAusal FEatures (CAFE)

Require: Data Samples S, Pre-trained Network f and Hypothesis Model h, Defense Loss Lgefense
1: for (X,Y) ~ Sdo

2 X, + Attack(X,Y) > PGD Attack
3: Fay < fi(Xe), Frawra < f1(X) > Adversarial/Natural Features
4: 7 + Faav — Fhawral > Instrumental Variables
5: Fac + Frawra + M(Z) > Calculating Causal Features
6: Ocausal = arg minl\él\xﬁw Dk (fi+(Eac) || f(X5)) > Causal Perturbation
7 Xeausal = X + Ocausal > Causal Inversion
8: Fac < fi(Xeavsal) > Estimated Causal Features
9: Lcare(0f) < Lpefense + Dxi(fi+(Fac) || fit (Faav)) > CAFE Loss with parameter 0 of f
10: Of < 0f — aa%fCCAFE > Update 67 (cv: Ir) for Minimizing CAFE Loss
11: end for

As described in line 9, we readily add a causal regularizer Dk to pre-defined defense 10ss Lpefense
and train all networks from scratch to show the true effectiveness of CAFE. Note that, the number
of steps for causal inversion is each 10 for CIFAR-10, SVHN and 3 (regarding speed) for Tiny-
ImageNet. More details are either described in our code at supplementary material.



F Efficacy of CAusal FEatures (CAFE)

F.1 CAFE without Causal Inversion (CAFE")

We experiment ablation study of CAFE without causal inversion to show the effectiveness of the
causal inversion for CAFE. In Algorithm 2, we first remove the procedures of getting the causal
inversion and the estimated causal features in line 6-8, and we name it CAusal FEatures without
causal inversion (CAFE") of which algorithm is explained in the following Algorithm 3.

Algorithm 3 CAusal FEatures without Causal Inversion (CAFE)

Require: Data Samples S, Pre-trained Network f and Hypothesis Model h, Defense Loss Lgefense
1: for (X,Y) ~ Sdo

2 X, + Attack(X,Y) > PGD Attack
3 Fay < fi(Xe), Frawra < f1(X) > Adversarial/Natural Features
4: 7 + Faav — Fhawral > Instrumental Variables
S Fac + Frawra + M(Z) > Calculating Causal Features
6: 'CCAFEJr — ['Defense + DKL(fl+ (FAC) H fl+(Fadv)) > CAFE]L Loss
7 Of < 0f — aa%fCCAFEf > Update 05 (a: Ir)
8: end for

Table 2: Measuring adversarial robustness of CAFE' not using causal inversion (Algorithm 3)
and comparing the robustness with original CAFE (Algorithm 2) on five defense baselines: ADYV,
TRADES, MART, AWP, HELP, trained with VGG-16 for CIFAR-10, SVHN, Tiny-ImageNet under
six attack modes: FGSM, PGD, CW,, AP, DLR, AA.

Method CIFAR-10 SVHN Tiny-ImageNet

Natural FGSM PGD CW., AP DLR AA Natural FGSM PGD CW, AP DLR AA Natural FGSM PGD CW,, AP DLR AA
ADV 785 49.8 448 426 432 429 407 919 64.8 521 489 48.0 485 452 532 253 215 21.0 202 208 19.6
ADVapgt 79.5 50.6 450 43.8 435 441 417 92.0 649 520 495 47.6 487 454 537 254 218 212 206 21.1 20.0

ADVoare 784 | 522 419 441 464 445 427 915 _ 670 553 500 513 496 461 526 260 228 221 218 220 210

Acart (%) 1.3 15 04 30 08 26 24 0.2 0.2 0.2 12 -08 05 04 0.9 0.6 1.7 1.2 22 15 18
Acare(%) -0.1 4.8 71 37 75 38 49 -04 34 61 22 68 23 19 -12 3.0 64 52 78 56 69
TRADES 79.5 504 457 432 444 429 418 919 66.4 53.6 49.1 49.1 477 452 528 259 225 219 215 21.8 207

TRADES gt 78.2 500 451 435 439 436 419 90.6 64.1 528 495 485 488 459 535 255 221 215 209 215 203
TRADEScarg 71.0 51.6 479 440 47.0 439 427 903 678 561 50.0 53.6 49.1 475 52.1 265 23.6 22.6 225 22.6 216

Acarsr (%) 1708 14 05 10 16 04 <14 34 15 10 -1 22 15 13 1916 14 30 -14 20
Acare (%) 31 22 48 L8 58 23 23 18 21 46 19 93 29 50 13 22 52 36 46 37 42
MART 797 524 472 434 455 438 420 926 666 542 479 496 471 444 531 250 215 212 204 210 199
MART gt 794 SI7 458 433 441 437 416 920 658 531 491 482 482 449 535 254 218 213 207 213 202
_MARTcarg 783 542 497 439 481 445 427 913 676 573 495 542 483 464 530 256 223 216 213 215 205
Acarpr (%) 0.5 13 30 02 -32 03 08 06 12 20 23 28 24 11 07 15 17 09 17 15 15
Acare (%) 18 34 51 L2 56 16 19 -14 14 59 33 92 27 46 02 24 40 18 43 25 31
AWP 780 517 482 435 472 434 426 908 655 566 504 540 497 486 526 280 257 236 248 235 2238
AWP gt 763 509 470 438 459 440 424 832 580 S8 490 498 487 470 525 265 234 226 224 225 216
AWPcarg 774 548 514 442 502 449 435 919 679 586 SL2 559 SL1 497 529 288 264 242 256 241 234
Acarer (%) 22 6 24 06 27 15 -04 83 -II4 86 29 7.9 20 33 02 54 87 40 96 -43 53
Acare (%) 08 58 68 17 64 36 22 12 38 34 16 36 27 23 06 3.0 27 27 33 25 29
HELP 774 518 483 439 473 439 429 912 658 566 509 539 502 488 530 283 259 239 251 238 23.1
HELP gt 762 510 472 439 461 442 427 876 617 537 496 S13 492 473 529 270 241 230 232 230 221
(HELPcape 756 544 514 446 504 448 437 915 673 585 SL6 562 514 500 526 294 271 247 264 244 239
Acarsr (%) 6 16 227 00 24 09 04 40 63 51 24 -50 20 30 01 44 70 38 78 -32 42
Acare (%) 23 50 64 15 66 22 18 03 23 33 14 42 24 25 -08 39 47 31 50 24 35

Table 2 shows that CAFE without causal inversion (CAFE') cannot further enhance adversarial
robustness of networks compared with that of original CAFE with causal inversion, and even CAFE'
has mostly worse robustness than its corresponding baselines. Due to its deviated prediction, we
introduce a causal inversion that helps to estimate causal features and fit their prediction. We can
then enlighten causal inversion has a remarkable effect to elevate robustness in all of the defense
networks and conclude the effectiveness of the CAFE comes from the causal inversion.

F.2 Power of Test Function

As described in Section 3.1 (Revisiting Non-parametric IV regression), the test function is responsi-
ble for generating infinite moment restrictions. In practical, however, it is impossible to handle the
such infinite moments. To deal with the analogue limitation, the adversarial learning [7, 4 1] utilizes



test function that provokes the upper-bound of the moment m by finding the extreme part of IV,
then minimizes m with hypothesis model to obtain more robustified one from counterfactuals. It is
highly aligned with our problem setup, because our main goal is either to acquire hypothesis model
extracting causal features, despite given the possible worst-case variation of IV. From the power of
test function, a lot of works: AGMM [41], DeepGMM [7], AGMM+RKHS [20], MMR-IV [44]
have employed min-max optimization for performing IV regression, and it has been empirically
verified that they greatly outperform the constraint optimization that does not fulfill min-max op-
timization with a test function: RandomForest, DirectNN, GMM [28], 2SLS [71], DeeplV [29],
KernellV [61]. Beyond the roles of our hypothesis model and test function, our proposed method
(AMR-GMM) also follows recent IV regression methods utilizing the min-max optimization.

CIFAR-10 Tiny-ImageNet

Method Natural AA Natural AA
_ADV_ 843 456 609 239
_ADVeuprys 846 471 603 237

ADVcarg 85.7 49.5 60.6 254

Table 3: Ablation study of test function g

For further verification, we train hypothesis model without test function and inoculate causal features
acquired from the hypothesis model to DNNs where we use minimizing optimization instead of min-
max one: ADV,pp\o to identify its regression effect. Then, we observe the experimental results
are significantly degraded in ADVcapg for CIFAR-10 and Tiny-ImageNet each with WRN-34-10.
From these results, we can say that min-max optimization fits in our problem setup.

F.3 Stability of CAFE

In Appendix E, we noted that our hypothesis model and test function were trained for 10 epochs on
CIFAR-10 and SVHN and 3 epochs on Tiny-ImageNet and it was deemed sufficient convergence,
as observed through empirical evidence.

CIFAR-10 SVHN Tiny-ImageNet
Networks Natural AA Natural AA Natural AA
_VGG-16 0027 0084 _ 0.005 0.027 _ 0.058__ 0.030
ResNet-18 0.015 0.028 0.003 0.021 0.039 0.028

WRN-34-10 0.007 0.021 0.001 0.019 0.018 0.024
Table 4: Standard deviations of CAFE for Stability

To verify the stability of CAFE, we experiment standard deviation results of CAFE for the accuracy
(%) of adversarial robustness under 20 repetitions on the all datasets with all networks for ADVcafpg.
This table implies that CAFE has either consistent stability of the performances, aligned with that
of acquiring causal estimator h in the concept of Lewis et al. [41] with Set Identification [14] and
Lipschitz [6] to finding e-equilibrium of the zero-sum game.



