
Appendix
A. Detailed Experimental Settings
A.1. Architecture

We use the model based on the improved version of
DDIM [20]. We use linear beta scheduling for �t from
0.0001 to 0.02 with T = 1000. This model has UNet struc-
ture with the blocks that consist of the residual and the at-
tention blocks. With the number of base channels as 128,
the number of channels is multiplied by [1, 1, 2, 2, 4, 4] for
each block in downsampling layers respectively, and spa-
tial size is down-scaled by half. It is reversed in the up-
sampling layers. Attention resolution is [16]. The dimen-
sion of zface is 512. Time is first embedded into 128 di-
mensional vector by positional encoding and projected to
512 dimensional vector using a 2-layer MLP with SiLU
activation. In each residual block, the time embedding for
diffusion modeling and the face feature zface are first
transformed by their corresponding SiLU-Linear layers re-
spectively and these conditions are applied by AdaGN. In
more detail, after the input of the residual block is passed
to GroupNorm(32)-SiLU-Conv3x3-GroupNorm(32), each
channel is scaled and shifted using time embedding. Sim-
ilarly, after SiLU-Conv3x3-GroupNorm(32), channels are
scaled and shifted by the transformed zface. Final block
output is obtained after SiLU-Dropout-Conv3x3 following
skip connection of the block input. We refer the readers to
the implementation code for more details.

A.2. Training Configuration
We optimize the learnable parameters jointly on 77294

videos of VoxCeleb1 dataset [18]. The videos are aligned
and cropped for interesting face regions as in Tzaban et
al. [35]. We use 4 V100 GPUs and an Adam optimizer [13]
with a learning rate of 1e-4. Total training steps are 1 mil-
lion and 4 frames per video so a total of 16 frames for 4
videos are taken for a single training step.

A.3. Manipulation
Classifier-based editing The linear classifiers Cattr are
trained on CelebA-HQ with attribute annotations in the nor-
malized identity feature space. The classifier is optimized
for 10 epochs with the batch size of 32 with a learning rate
of 1e-3. Before taken by the classifier, identity features are
normalized by the mean and standard deviation of identity
features of all samples in VoxCeleb1 test set. Therefore,
normalization and denormalization are conducted before
and after the identity features are moved by the desired di-
rection wattr as `2Norm(DeNorm(Norm(zid)+ swattr))
where s is the hyperparameter for the editing step size,
Norm/DeNorm is normalizing and denormalizing func-

tion with the statistics of identity features respectively, and
`2Norm is the normalization function that makes the `2
norm of vectors equal to 1. We use `2 normalization be-
cause Eid outputs vectors after normalizing their size to 1.

CLIP-based editing For CLIP-based editing, we use
ViT-B/16 among different CLIP architectures. We optimize
an identity feature of a single selected frame (usually the
first frame of the video) with the Adam optimizer to min-
imize the CLIP loss. We consider S = 5 for the number
of intermediate latent states. After conduction optimization,
the learned editing direction �zid multiplied by the edit-
ing step size is added to the representative identity feature
of the video zid,rep. The final edited feature is obtained by
applying `2Norm. The search spaces of remaining hyperpa-
rameters are provided in Tab. 3.

Table 3. Hyperparameter search space

Parameter Search space
Learning rate [2e-3, 4e-3, 6e-3]
Weight of CLIP loss [3]
Weight of ID loss [1, 3, 5]
Weight of `1 loss [1, 3, 5]
Editing step size [0.1, 0.5, 1.0, 1.5, 2.0, 2.5]
Optimization steps [2000]

B. Ablation of Noisy CLIP Loss
In this section, we conduct an ablation study of our noisy

CLIP loss introduced in Sec. 4.2. We compare our CLIP-
based editing method using noisy CLIP loss (See Fig. 3)
with the way that uses estimated x0 conditioned by zoptid as
the target image and the original x0 as the neutral image
for each time step ts to compute the directional CLIP loss,
which is similar to the method suggested by Kim et al. [12].
The results are presented in Fig. 8. For a fair comparison,
we use the same weights for `1 loss and ID loss.

To help readers understand, we first briefly explain the
directional CLIP loss [7] and DiffusionCLIP [12] before we
address the ablation results. The directional CLIP loss com-
pares the direction from neutral image embedding to target
image embedding with the direction from neutral text em-
bedding to target text embedding in the CLIP space to edit
the target image to match the target text. Kim et al. [12] pro-
pose an image manipulation method, named DiffusionCLIP,
that optimizes the unconditional diffusion model ✏✓ with the
directional CLIP loss [7]. To preserve the original images
to some extent, Kim et al. [12] consider the latent states of
the original images in not the whole but just a partial range
such as [0, T/2] obtained by sparsely passing through the
range with the deterministic forward process of DDIM. In
the GPU-efficient version of DiffusionCLIP, they take an es-
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Figure 8. Ablation of using clean image x0 or intermediate noisy
image x̂ts for a neutral image in directional CLIP loss. As the
target image, the former uses estimated x0 at the intermediate time
step like [12] and the latter uses xeditts .

timated x0 from the latent states in considered intermediate
time steps as the target images and compare them with the
clean original image x0 as the neutral image.

Going back to the ablation study, unlike Kim et al. [12],
we consider the entire range [0, T ] to start conditional sam-
pling from the noise that only has background information
and split the range into total S steps (e.g. S = 5) for com-
putational efficiency. In this case, applying CLIP loss be-
tween the original image (neutral) and the estimated x0 (tar-
get) makes identity to be altered as in the second column
of Fig. 8 because the difference between the estimated x0

at time t and the clean image x0 becomes larger as t goes
larger. To overcome this phenomenon, we apply CLIP loss
between the intermediate outputs x̂ts (conditioned on orig-
inal zid for the neutral images) and xeditts (conditioned on
trainable zoptid for the target images). In the last column of
Fig. 8, the original identity is well preserved with the de-
sired features edited properly. From these results, we con-
clude that applying the CLIP loss between the images on the
same level of uncertainty as our method leads to relatively
stable editing results.

C. Additional Quantitative Results
C.1. User Study

Current video editing tasks still lack metrics to mea-
sure how well the video is edited or whether the edited
video is temporally consistent. Although quantitative re-
sults have already been reported with metrics used by the
prior work [35], we further conduct the user study for suffi-
cient evaluation of editing quality and temporal consistency.
Since we use both classifier-based and CLIP-based editing

methods, we choose Tzaban et al. [35] which allows both
predefined attributes and CLIP-based editing as a baseline.
For a fair comparison, the hyperparameters of baseline, ↵
and �, are carefully determined among the 4, 8, ..., 24, and
0.1, 0.2, 0.3 respectively.

52 volunteers were asked to select the superior result be-
tween the edited output of prior work [35] (GAN-based) and
ours (with T = 100 for fairness in time-cost) on 24 videos.
The evaluation covers two aspects; 1) quality: the given tar-
get attribute should be properly reflected in the video, and
2) consistency: consecutive frames continue naturally after
editing.

In Tab. 4, 61.9% and 66.3% of the volunteers favor our
method in terms of editing quality and temporal consis-
tency, respectively. In particular, certain attributes (such as
a beard or eyeglasses; called ‘fragile’ in the Tab. 4) exhibit
a noticeable lack of temporal consistency when edited us-
ing the baseline method [35]. When only considering these
cases, 72.3% of the volunteers picked ours for better con-
sistency.

Table 4. Results of a user study

quality consistency
Method all all fragile
Tzaban et al. [35] 38.1 33.7 27.7
Ours 61.9 66.3 72.3

C.2. Disentangled Editing
Although we verified that ours show better performance

in terms of temporal consistency in Tab. 2, this metric can-
not detect the identity-irrelevant attribute. Thus, we mea-
sured non-target attributes preservation as target attribute
change in the way used by Yao et al. [41].

Here, we use videos and the corresponding target at-
tributes prepared for the user study. Since we measured 24
edited videos with various target attributes, unlike Yao et
al. [41] used 1K images for each target attribute, we av-
eraged a non-target attributes preservation rate as corre-
sponding target attribute change. The Fig. 9 shows that our
method is slightly better at preserving non-target attributes
compared to the baseline [35].
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Figure 9. Attribute preservation vs. target attribute change (a
higher curve is better).



C.3. Inference Time Comparison
While GAN-based methods require only a single pass to

synthesize a new edited frame, they internally run PTI [27]
for reconstruction, which takes more than a few seconds
per frame. As shown in the Tab. 5 where we compare the
elapsed time with a single RTX 3090 to edit per frame via
ours and Tzaban et al. [35], we are rather slow with full it-
erations of T but slightly faster at T = 100 with sufficiently
reasonable performance. Moreover, deterministic and faster
ODE samplers [15, 16] can also be utilized to reduce time
further to 2.9s (the 3rd order of DPM-solver with 15 steps)
with comparable quality (refer to project page).

Table 5. Inference time comparison

Ours Tzaban et al. [35]
T = 1000 T = 100

Classifier 60.9s 5.8s 12.7s
CLIP 62.4s 7.3s 12.0s
+ sampler 2.9s

D. Limitations and Further Discussion
The main limitations of our method come from exploit-

ing the pretrained networks such as an identity encoder (Ar-
cFace) and a landmark encoder: 1) Using these networks
limits the domain to face video as other previous works in-
cluding face editing, face swapping, and face reenactment.
2) Our method is difficult to edit poses or facial expressions
that can not be fully captured by the identity encoder. We
conjecture that this is the reason why the eyebrows are un-
natural in the last row of Fig. 13. 3) Since the identity en-
coder is trained for face recognition tasks, the latent space
may lack disentanglement for editing. For example, we ob-
served a gender bias when attempting to apply a ‘beard’ to
a woman. As a future direction, this weakness could be re-
solved by finding out the disentangled space analogous to
the style space of StyleGAN or training a module to dis-
cover disentangled editing directions.

In addition, a higher resolution video is possible as a
future direction. We apply our method to 2562 resolution
videos for the following reasons: 1) The implementation
of diffusion autoencoders [23] on which we are based is
for 2562 images. 2) The dataset used, VoxCeleb1, includes
many low-resolution videos, which we have resized to a
suitable and balanced size of 2562. For a higher resolution,
our method can be seamlessly applied by exploiting a diffu-
sion upsampler module as DALLE-2 [25] or latent diffusion
model architecture as Stable Diffusion [28] with condition-
ing our semantic representation.

E. Comparison of Temporal Consistency
We upload the video file of Fig. 4 to the project page.

In the video, the result of Yao et al. [41] shows an altered

identity, the result of Tzaban et al. [35] shows temporal in-
consistency that beards fade away as the mouth opens, and
the result of Xu et al. [40] shows unnatural movements with
the mouth not opening as much as the original and incon-
sistency of the beard. On the other hand, ours demonstrates
much improvement in terms of the temporal consistency
and identity preservation.

F. Additional Editing Results
We show additional video editing results with classifier-

based editing in Figs. 10 and 11 and CLIP-based editing
in Figs. 12 and 13. These results demonstrate that our video
editing method has temporal consistency for other attributes
as well.

https://diff-video-ae.github.io
https://diff-video-ae.github.io


O
rig
in
al

−
Si
de
bu
rn
s

O
rig
in
al

−
M
al
e

O
rig
in
al

−
Y
ou
ng

O
rig
in
al

+
H
ea
vy
_M
ak
eu
p

Figure 10. Classifier-based video editing on the other videos not in VoxCeleb1.
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Figure 11. Classifier-based video editing on VoxCeleb1 test set.
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Figure 12. CLIP-based video editing on the other videos not in VoxCeleb1.
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Figure 13. CLIP-based video editing on VoxCeleb1 test set.
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