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Abstract

Due to the lack of the space in the main paper, we provide
more details of the proposed ERF-X170FPS datasets and
experimental results in the supplementary materials.

1. ERF-X170FPS Dataset

1.1. Camera Setup Details

Beam-splitter-based camera setup A beamsplitter is an
optical device for splitting incident light into two beams
according to a specified ratio. Therefore, a beamsplitter
enables two different cameras to capture the same scenes
by the split light source. The beam-splitter-based cam-
era setup for photographing the ERF-X170FPS dataset is
shown in Fig.1. For beam-splitter selection, we choose a
non-polarized cube beam-splitter rather than the plate-based
beam-splitter to alleviate beam-shifting issues. We select
BS-CUBE-NON-POL-VIS-50MM-TS beam-splitter with a
size of 50cm3, which can capture a large field of view of
the scenes. The beamsplitter splits the incident light into
non-polarized light in a ratio of 50:50. After that, we de-
signed a 3D-CAD model for a rigid camera rig that can
completely immobilize two cameras and a beam-splitter, as
shown in Fig.3. For the RGB camera, we select FLIR BFS-
U3-16S2C-CS. The camera can shoot videos at the resolu-
tion of 1440×1080 and up to 226FPS and support an exter-
nal trigger interface. Also, we selected EVK4 HD Prohesee
Gen4.1 HD event camera. The event camera can capture
videos with a resolution of 1280× 720. We then fixed these
two cameras and a beam-splitter to the designed camera rig.
As a result, two cameras can receive the incoming co-axis
light source at a fixed position.
Camera synchronization In practice, we can’t obtain
the accurate timestamps of two cameras without interfac-
ing with the external trigger. For this reason, we designed
a micro-controller(ATmega328) as an external trigger for
hard-ware level synchronization of the event and RGB cam-

era. The event and RGB cameras are connected to the mi-
crocontroller through a trigger cable, as shown in Fig.1.
Therefore, the generated signals of the microcontroller are
simultaneously transmitted to the event camera and RGB
camera, respectively. After that, we create recording soft-
ware using provided C++ SDK of each camera product to
control these two cameras by receiving signals from the mi-
crocontroller. Each camera receives the falling edge and the
rising edge of trigger signals and performs synchronization
with the period of the signal. Through this external trigger,
we can control the RGB camera’s frame rate and exposure
time with synchronized signals. Also, we obtain accurate
timestamps of the events between two consecutive standard
frames. As a result, we can obtain two different modality
data with precise timestamp information as the two cam-
eras are synchronized at the hardware level.
Calibration Two cameras receive a co-axis light source
due to beam-splitter camera setup. As a result, two cameras
have the minimal baselines. However, they have different
fields of view due to the different sensor sizes of each cam-
era. To this end, we calibrate the event and RGB camera for
spatially aligning two different modality data. For intrinsic
and extrinsic calibration, we use a blinking checkerboard
pattern. After the calibration process, we transform the
spatial pixel position of the events using the estimated ho-
mography matrix. We then crop the standard frames whose
fields of view do not overlap with the event camera. As a
result, we simultaneously record spatially aligned event and
frame data with a resolution of 1440× 975.

1.2. Photographing Dataset

To properly evaluate VFI performance in diverse cir-
cumstances, it is essential to shoot various scenes, such
as multiple camera motions and objects. Specifically, in
event-based VFI, scenes for synthesis-based interpolation
and warping-based interpolation should be distributed har-
moniously. As mentioned in the main paper, synthesis-
based interpolation is effective in regions where motion
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Figure 1. Our beam-splitter-based camera setup.

fields are invalid. The synthesis-based interpolation works
well in situations such as flooding water, rotating objects,
fire, and occlusion of scenes. However, in many typical
situations, there are many areas where the motion fields
are valid due to camera or object movement, except for
the above cases. In the case of the previous event-based
VFI datasets [13], the test scenes of the BS-ERGB dataset
mainly photographed the scenes where motion fields are in-
valid. (e.g., flooding water tank, fire, popping eggs, fast ro-
tating objects, thin objects with static camera movement).
For these reasons, it is hard to evaluate the performance of
motion-based frame interpolation methods in the previous
event-based VFI dataset. To alleviate the deficiency, we
photographed our ERF-X170FPS dataset with the follow-
ing multiple categories:
(i) We capture moving objects on a fast-moving car with di-
verse vehicle speeds.
(ii) We move the camera with irregular directions and speed
to shoot static scenes and moving objects. (e.g., flowers,
lake, fountain, road, windmill, traffic signs, building, ani-
mals, crowds, etc.)
(iii) We photographed the situation of the dynamic motion
of people and animals with fast camera movement.(e.g.,
dancers, soccer, tennis player, rotating men, etc)
(iv) We photographed the fast deformable objects(e.g., wa-
ter, exploding cola, rapidly falling and rotating objects,
etc.).
In the case of (i), (ii), warping-based interpolation mainly
works, and synthesis-based interpolation generally works
well in (iv). In the case of (iii), the interpolation result is
the sum of the combination of two methods. Based on this
analysis, we photograph four possible situations in balanced
numbers.

1.3. ERF-X170FPS-Split

We manually selected 36 scenes for the test set of ERF-
X170FPS in consideration of the degree of occlusion and

motion speed. As in the Tab.1, we have balanced the distri-
bution of the above four situations. Compared to the BS-
ERGB [13] dataset, the proposed ERF-X170FPS dataset
is well distributed in four categories of situations to allow
better evaluation of motion-based VFI methods. As men-
tioned in the main paper, we evaluated the {3, 7, 11} skips
of original videos to compare the other VFI methods for di-
verse motion ranges. The examples of our test set of ERF-
X170FPS are shown in Fig.2. We divided the remaining
scenes into validation and train sets.

2. Additional Experimental Results and Details

2.1. Video Demos

We generated demo videos on the proposed ERF-
X170FPS and GoPro/HQF datasets. Demo videos named
as Video demo.mp4 include the qualitative comparison of
videos with other SoTA VFI methods.

2.2. Quantitative evaluation results of multi-frame
interpolation on GoPro [6] dataset

In the main paper, we report the evaluation results for the
middle frame of the skipped video frames on the synthetic
event datasets in the Tab. 2. We additionally perform com-
parison on the whole frames of the skipped video frames
(7skips in GoPro datasets). As with the main paper, we sig-
nificantly outperform frame-based and event-based video
frame interpolation methods.

2.3. Datasets Details

Real Event Datasets As mentioned in the main paper, we
conducted in two publicly available real-event datasets. The
first dataset is High Quality Frame (HQF) [11] dataset cap-
tured by the DAVIS-240C event camera with 14 different
scenes. This dataset provides the synchronized events and
frames (240×180 resolution) with 14 different scenes. In
addition, we conduct the experiments on the BS-ERGB [13]
dataset. Following the evaluation protocol with the previous
methods [2, 13, 14, 16], we evaluate whole skipped frames
within {1, 3} frame skips for both datasets.

2.4. Implementation Details

We implemented our framework using PyTorch [10]. To
train our networks, we use batch size 6 for the all datasets
and AdamW [5] optimizer to update network weight using
initial learning rate 1e−4 and decay rate 0.5. We apply ran-
dom cropping to the frame and events for the same pixel
position. For the quantitative evaluation, we use the stan-
dard evaluation metrics, PSNR and SSIM [15].



Table 1. The overview of test set of ERF-X170FPS.

Seq.Name Camera settings Explanations Scene class
Building 01 170FPS, 990 frames capturing with fast camera movement of building. (ii)

Traffic load 01 170FPS, 990 frames capturing fast car and bicycles with zig-zag camera motion. (ii)
Fountain water pump 01 170FPS, 990 frames capturing fountain with non-linear camera motion. (ii)
Fountain water pump 02 170FPS, 990 frames capturing fountain with up-down camera motion. (ii)

Flowers 01 170FPS, 990 frames capturing flowers with rotations. (ii)
Geese and lake 01 170FPS, 990 frames capturing with moving geese in the lake. (ii)

Traffic road 01 170FPS, 990 frames capturing fast moving cars and traffic signs. (ii)
Dancer 01 170FPS, 990 frames capturing fast moving dancer with non-linear camera motion. (iii)
Dancer 02 170FPS, 990 frames capturing dancer with close distance. (iii)

Geese swarm 01 170FPS, 990 frames capturing geese swarm. (iii)
Windmill 01 170FPS, 990 frames capturing fast rotating windmill. (iii)

Bicycle road 01 170FPS, 990 frames capturing bicycle road with fast up-down camera movement. (ii)
Traffic road 02 170FPS, 990 frames capturing fast moving car with fast camera movement. (ii)

Soccer players 01 170FPS, 990 frames capturing fast soccer players. (iii)
Soccer players 02 170FPS, 990 frames capturing fast soccer players. (iii)
Soccer players 03 170FPS, 990 frames capturing fast dribbling soccer players. (iii)
Driving forest 01 170FPS, 990 frames capturing the forest on the car. (i)
Driving u-turn 01 170FPS, 990 frames capturing trees with car u-turn. (i)
Driving forest 02 170FPS, 990 frames capturing the forest on the car. (i)

Driving bicycle stand 01 170FPS, 990 frames capturing the bicycle stands on fast car. (i)
Tennis 01 170FPS, 990 frames capturing tennis players with irregular left-right camera motion. (iii)
Tennis 02 170FPS, 990 frames capturing tennis players. (iii)

Driving u-turn 02 170FPS, 990 frames capturing the scenes on the fast u-turning car. (i)
Driving urban 01 170FPS, 990 frames capturing the urban scenes on the fast moving car. (i)

Driving left-turn 01 170FPS, 990 frames capturing with a left-turn on an intersection and shooting cars and trees. (i)
Driving bridge 01 170FPS, 990 frames capturing the bridge on the fast moving car. (i)

Driving department store 01 170FPS, 990 frames capturing the department store on the fast moving car. (i)
Driving road 01 170FPS, 990 frames capturing the trees and national police agency on the fast moving car. (i)

Falling pop-corn 01 170FPS, 990 frames capturing falling pop-corn. (iv)
Climbing people 01 170FPS, 990 frames capturing person quickly climbing stairs. (iii)
Fast rotating man 01 170FPS, 990 frames capturing fast rotating man. (iii)
Exploding cola 01 170FPS, 990 frames capturing exploding cola with mentos. (iv)
Exploding cola 02 170FPS, 990 frames capturing exploding cola with mentos. (iv)

lakelet 01 170FPS, 990 frames capturing lakelet with non-linear camera motion. (iv)
Waterfall 01 170FPS, 990 frames capturing water fall in the lakelet. (iv)

Handwash 01 170FPS, 990 frames capturing a person washing his hands. (iv)

2.5. Qualitative comparison of the warped frame on
GoPro [6] dataset

Due to the lack of the main paper, we only report the
quantitative results of the warped frame of inter-frame mo-
tion fields in the main paper. In addition to the quantita-
tive results, we perform qualitative comparison of estimated
inter-frame motion fields in the Fig.4 As shown in the fig-
ure, our EIF-BiOFNet more reliably estimate bidirectional
inter-frame motion fields than state-of-the-art inter-frame
motion field estimation methods [3, 4, 8, 9, 14].

2.6. How does EIF-BiOFNet operate w/o events?

If there is no motion (with no events), the anchor and
the boundary frames are the same, and the OF comes out as
nearly zero. The other case is that relative motion exists, but
events are unavailable (anchor and boundary frames differ).
For the second case, we could only train the I-BiOFNet, and
the ablation results are shown in Tab. 3. We can see that the
anchor feature synthesis may not perform well compared
to using events. However, even without events, ours shows

comparable performance to that of image-based VFI SoTA
method ABME [9]

2.7. Implementation details of [14]

For finetuning [14] on the ERF-X170FPS datasets, we
followed the original paper’s approach by training each
stage individually and adhering to the original training strat-
egy. Tab. 4 demonstrates that the finetuned model outper-
forms the official pretrained model.

In the case of TimeLens-Flow, the pretrained model is
trained on not only synthetic event datasets but also real-
world event datasets. Therefore, the performance will be
degraded if we directly apply the pre-trained model to the
synthetic datasets. For a fair comparison with ours, we re-
trained the TimeLens-flow only on the GoPro dataset.

2.8. Additional Visual Results

2.8.1 More Visual Results on ERF-X170FPS dataset

In Fig. 6∼Fig. 10, we show more qualitative results of inter-
polated frames on the ERF-X170FPS dataset. In the figure,



Table 2. Quantitative evaluation of multi-frame interpolation (whole skipped frames of 7skips) on the GoPro [6] dataset.

Methods GoPro
SuperSloMo [4] SepConv [7] DAIN [1] BMBC [8] TimeLens† [14] TimeReplayer† [2] A2OF† [16] Ours Ours-Large

PSNR 28.95 29.13 28.81 29.08 34.81 34.02 36.61 37.77 38.03
SSIM 0.876 0.876 0.876 0.875 0.959 0.960 0.971 0.974 0.975

Table 3. Ablation study of inter-frame motion fields without events
on the GoPro datasets.

ABME [30] I-BiOF (w/o ev.) I-BiOF (w/ ev.) E-BiOF EIF-BiOF
PSNR 22.1 21.9 28.9 27.8 30.4

Table 4. Quantitative evaluation results of TimeLens [14] on the
ERF-X170FPS dataset. [14]-P and [14]-F represent the pre-
trained and finetuned model of TimeLens [14], respectively.

3skips 7skips 11skips Avg.
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

[14]-P 23.08 0.724 20.76 0.666 19.44 0.633 21.09 0.674
[14]-F 25.34 0.807 21.99 0.729 20.18 0.685 22.50 0.740

we compare with state-of-the-art frame-based video frame
interpolation methods, ABME [9], RIFE [3], event-based
video frame interpolation method, TimeLens [14]. We con-
firm that our method significantly outperforms other frame-
and event-based video frame interpolation methods.

2.8.2 More Visual Results on GoPro [6] dataset

In the Fig. 11, we show more qualitative results on the Go-
Pro dataset.

2.8.3 More Visual Results on Adobe240fps [12] dataset

In the Fig. 12, we show more qualitative results on the
Adobe240fps dataset.
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Figure 2. The examples of our ERF-X170FPS test dataset. Our dataset contains diverse scenes and motion speed at 170FPS, which consists
of HR video frames and temporally synchronized HR event data.
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Figure 3. Beam-splitter-based camera rig 3D CAD drawing.
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Figure 4. The qualitative comparison on the warped frame of estimated inter-frame motion fields on GoPro dataset. In order, (a) GT
frame, (b) SuperSloMo [4] (c) BMBC [8] (d) ABME [9] (e) RIFE [3] (f) TimeLens [14] (g) Ours. As in the results, we confirm that our
method produces more accurate warped frames than state-of-the-art inter-frame motion fields estimation methods. Please zoom for better
visualization.
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Figure 5. Visual results on the ERF-X170FPS dataset. (Best viewed when zoomed in.)
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Figure 6. Visual results on the ERF-X170FPS dataset. (Best viewed when zoomed in.)
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Figure 7. Visual results on the ERF-X170FPS dataset. (Best viewed when zoomed in.)
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Figure 8. Visual results on the ERF-X170FPS dataset. (Best viewed when zoomed in.)
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Figure 9. Visual results on the ERF-X170FPS dataset. (Best viewed when zoomed in.)
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Figure 10. Visual results on the ERF-X170FPS dataset. (Best viewed when zoomed in.)
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Figure 11. Visual results on the GoPro dataset. (Best viewed when zoomed in.)
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Figure 12. Visual results on the Adobe240fps dataset. (Best viewed when zoomed in.)
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