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ResNet-18 CIFAR-100
Method Natural FGSM PGD-20 PGD-100 C&W Ensemble

AT 59.25 28.80 24.39 23.43 23.92 22.46
AT + FSR 58.23 29.58 25.33 24.30 24.54 22.95
TRADES 61.87 30.77 26.37 25.76 24.08 23.45

TRADES + FSR 57.27 31.66 27.70 27.27 24.82 24.40
MART 57.13 31.32 27.40 26.80 25.24 24.42

MART + FSR 56.51 32.08 27.90 27.28 25.91 24.98

Table S1. Robustness (accuracy (%)) of adversarial training strate-
gies (AT, TRADES, MART) with (+ FSR) and without our FSR
module against diverse white-box attacks on ResNet-18 and on
CIFAR-100 dataset. Better results are marked in bold.

ResNet-18 Tiny ImageNet
Method Natural FGSM PGD-20 PGD-100 C&W Ensemble

AT 51.13 22.54 18.69 17.87 17.83 16.34
AT + FSR 51.77 24.19 20.95 20.06 19.32 18.02
TRADES 50.41 23.79 21.16 20.72 17.24 17.02

TRADES + FSR 49.53 24.87 23.22 23.09 19.22 19.04
MART 46.21 23.84 21.75 21.35 18.34 17.71

MART + FSR 46.02 26.02 24.05 23.82 20.63 20.24

Table S2. Robustness (accuracy (%)) of adversarial training strate-
gies (AT, TRADES, MART) with (+ FSR) and without our FSR
module against diverse white-box attacks on ResNet-18 and on
Tiny ImageNet dataset. Better results are marked in bold.

1. Additional Robustness Evaluation

In this section, we report the robustness of our FSR on
additional datasets (CIFAR-100 [6], Tiny ImageNet [4]) and
model (WideResNet-34-10 [8]).

Experiments on Other Datasets. Table S1 shows the ro-
bustness improvements when our FSR module is applied on
AT, TRADES, and MART in CIFAR-100 dataset. While the
performance improvements are not as large as in CIFAR-
10 and SVHN, applying our FSR module consistently im-
proves the model robustness of all three adversarial train-
ing techniques, showing that our method is still effective
on more challenging datasets. We noted that the reason for
limited accuracy gain on CIFAR-100 is actually due to its
low-resolution data not providing sufficient information for
learning the inter-class relationship among cues relevant to
various similar classes (e.g., boy and man) [3].

WideResNet-34-10 CIFAR-10
Method Natural FGSM PGD-20 PGD-100 C&W Ensemble

AT 87.49 59.47 50.72 48.75 50.42 48.52
AT + FSR 87.02 61.40 53.78 52.04 52.35 50.36
TRADES 86.06 60.78 51.77 49.66 51.34 49.27

TRADES + FSR 86.88 62.97 54.37 51.98 53.19 51.34
MART 85.81 61.22 52.49 49.88 49.67 48.81

MART + FSR 86.21 62.61 54.23 52.00 51.25 50.10

Table S3. Robustness (accuracy (%)) of adversarial training strate-
gies (AT, TRADES, MART) with (+ FSR) and without our FSR
module against diverse white-box attacks on WideResNet-34-10
and on CIFAR-10 dataset. Better results are marked in bold.

Thus, we also evaluate our method on a more challening
Tiny ImageNet dataset with fine-grained classes and higher-
resolution images. As shown by the results in Table S2,
we observed 2.08% improvement on average for Ensemble
robustness compared to vanilla methods, which is signifi-
cantly higher than that of CIFAR-100 (0.67%, Table S1) and
on par with CIFAR-10 (2.20%, Table 1) and SVHN (2.30%,
Table 2). This shows that our FSR module is also effective
on larger, more complex models and datasets and is not lim-
ited by the over-parameterization of the model.
Experiments on Other Model. In addition to ResNet-18
and VGG16 in the main paper, we also evaluate our FSR
module on WideResNet-34-10. As shown in Table S3, our
FSR module leads to consistent robustness improvement on
WideResNet-34-10.

2. Additional Ablation Studies

Position of FSR module. Table S4 reports the model ro-
bustness when our FSR module is inserted to different lay-
ers of ResNet-18. As shown in the table, inserting our FSR
module after Block4 of the model shows the best model
robustness under attacks. This is because the model learns
features that are more related to the global semantic infor-
mation of the image and the final class prediction in the
deeper layers, while it learns more low-level features with
less semantic information in shallower layers [2]. Recali-
brating the non-robust activations in the deeper layers that
are more related to the final predictions is more effective at
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No attack FGSM PGD-20 PGD-100 C&W Ensemble
Block1 84.58 56.41 48.29 46.28 46.96 44.89
Block2 83.76 56.34 48.86 47.03 47.32 45.28
Block3 82.60 56.62 50.43 49.11 47.84 46.33
Block4 81.46 58.07 52.47 51.02 49.44 48.34

Block3 + Block4 82.18 56.93 50.72 49.32 48.63 46.91

Table S4. Comparison of accuracy (%) as we insert our FSR mod-
ule after different layers of ResNet-18.

No attack FGSM PGD-20 PGD-100 C&W Ensemble
AT 85.02 56.21 48.22 46.37 47.38 45.51

Uniform 85.16 58.05 50.87 48.91 49.99 47.90
Entropy max. 84.69 58.35 50.66 48.93 49.90 47.88

Avg. targeted loss 84.50 57.98 50.41 48.55 49.80 47.42
Mispredicted (Ours) 81.46 58.07 52.47 51.02 49.44 48.34

Table S5. Comparison of accuracy (%) for different design choices
of the separation loss Lsep (Eq. 3).

boosting the model robustness.
Design Choice of Lsep. As explained in Sec. 3.1 of the
main paper, in order to disentangle the non-robust activa-
tions through the separation loss Lsep (Eq. 3 of the main
paper):

Lsep = −
N∑
i=1

(yi · log(p+i ) + y′i · log(p−i )), (1)

we minimize the cross entropy loss of the prediction score
with respect to y′, which we define as the label correspond-
ing to the wrong class with the highest prediction score.
In Table S5, we report the comparison of robustness as we
employ different schemes for such disentanglement. “Uni-
form” represents replacing y′ with a uniform vector imple-
mented through label smoothing, “Entropy max.” represents
maximizing the entropy of the output prediction p− on the
non-robust feature, “Avg. targeted loss” represents the av-
erage of cross-entropy loss with respect to all class labels
except for the ground truth class, and “Mispredicted” rep-
resents our original design. All four schemes lead to mean-
ingful improvement compared to the vanilla AT method, as
they guide the Separation Net to learn low robustness scores
on feature units that are responsible for predictions other
than the ground truth class. Still, our design of using the
mispredicted class output achieves the highest robustness
under all attacks. This implies that through this scheme, the
Separation Net learns to assign low robustness scores to the
most harmful feature units that lead to the most probable
model mistake and thus improves the feature robustness by
the largest margin.
Effects of Gumbel Softmax. We verify the effects of ap-
plying Gumbel softmax to generate a differentiable soft
mask m that divides the input feature map into the robust
activations and the non-robust activations. We compare the
robustness upon replacing m with a binary mask b (Sec. 3.1

FGSM PGD-20 PGD-100 C&W Ensemble AutoAttack
Binary 55.78 49.21 47.79 48.74 46.91 44.26
Gumbel 58.07 52.47 51.02 49.44 48.34 46.41

Table S6. Comparison of accuracy (%) on using mask generated
by discrete binary sampling or through Gumbel softmax.

FGSM PGD-20 PGD-100 C&W Ensemble
Greedy 57.75 49.48 47.59 48.36 46.42
Random 56.60 50.04 48.46 49.08 46.77

w/o Separation 57.51 50.71 48.98 49.32 47.60
w/ Separation (Ours) 58.07 52.47 51.02 49.44 48.34

Table S7. Comparison of accuracy (%) as we replace the Separa-
tion Net with different strategies.

of the main paper) that divides the activations in a discrete
manner. We implement the binary mask b by first applying
a sigmoid normalization function to the robustness map r
generated by the Separation Net and setting all values less
than 0.5 to 0 and all values greater than or equal to 0.5 to 1.
In other words, for an i-th unit of the robustness map r, we
set bi as follows:

bi =

{
0, if σ(r)i < t

1, if σ(r)i ≥ t,
(2)

where t = 0.5, and σ(·) is the sigmoid normalization func-
tion.

In Table S6, we show the comparison of robustness of
our method upon using either b (Binary) or m (Gumbel).
Using the differentiable mask m through the Gumbel soft-
max leads to higher robustness against all white-box attacks
and especially against the AutoAttack than using the binary
mask b. Using the Gumbel softmax allows us to learn the
mask to better capture the feature robustness, and it also
prevents gradient masking, thus showing higher robustness
against AutoAttack.
Experiments on Effectiveness of the Separation Net. In
order to verify whether our Separation Net is learning ap-
propriate robustness scores for each feature activaiton, we
tried replacing the output mask m from the Separation Net
(Eq. 2) with different strategies. We tested random selec-
tion and a greedy method of recalibrating the lowest ac-
tivations, both of which would recalibrate feature activa-
tions unaware of their robustness. Table S7 shows that both
strategies significantly lag behind our method without Sep-
aration, which is equivalent to recalibrating all activations
(refer to Table 6). This is because they do not fully recap-
ture the discriminative cues underlying in non-robust acti-
vations. Our method with Separation leads to the highest
robustness, showing that FSR well identifies the non-robust
activations and recaptures discriminative cues from them.
Hyperparameter Study. We also compare the robustness
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Figure S1. Analysis on the robustness with various values of hyperparameters used in FSR module. (a) Study on τ that controls the
temperature on Gumbel softmax. (b) Study on λsep that controls the weight on the separation loss Lsep. (c) Study on λrec that controls
the weight on the recalibration loss Lrec.
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Figure S2. Analysis on obfuscated gradients. (a) Change in model
robustness as we vary the number of iterations in PGD attack. (b)
Change in model robustness as we vary the perturbation bound ϵ.

as we vary the temperature τ (Eq. 2) that controls how “dis-
crete” the mask is. For low temperature values, the out-
put mask becomes more discrete (i.e., most values are close
to either 0 or 1), and for high temperature values, it be-
comes more uniform (i.e., most values are far away from
0 or 1) [5]. As shown in Fig. S1a, we achieve the highest
robustness when τ = 0.1. From this observation, we can
see that too small τ will degenerate the Gumbel softmax
into binary sampling and make the mask become a binary
mask, which could result in no gradients or improper train-
ing [7]. In contrast, too large τ will make the mask become
more uniformly distributed and reduce the gap between the
mask values applied on robust or non-robust activations,
thus making our goal of disentanglement less feasible.

In Fig. S1b and Fig. S1c, we visualize the trends of
model robustness as we vary the weights on our proposed
loss functions Lsep (Eq. 3) and Lrec (Eq. 4). Higher value
of λsep generally improves robustness under all attacks with
the best performance achieved when λsep = 1, showing that
our proposed objectives help the model learn more robust
feature representations. Similar trends can also be observed
for λrec; higher value of λrec generally improves robust-

ness with the best performance achieved when λrec = 1.
Setting λsep and λrec to be too high, however, tends to de-
grade robustness. This is because of the trade-off between
the vanilla classification loss Lcls on the final classifier layer
and the two auxiliary loss. As we focus more on the objec-
tives on the auxiliary layer, the two auxiliary losses may de-
viate the model from learning the classification task based
on Lcls.

3. Analysis on Obfuscated Gradients
In this section, we verify that the robustness of our

method is not a result of obfuscating gradients. We test our
method under the following criteria [1] to demonstrate that
our method does not obfuscate gradients:

(i) White-box attacks are stronger than black-box attacks,
(ii) Robustness decreases with the increased number of it-

erations in gradient-based attacks,
(iii) Robustness decreases with increased perturbation

bound ϵ, and unbounded attacks achieve 100% attack
success rate.

Tables 1 and 3 of the main paper show the robustness
of our method under both white-box and black-box attacks
when applied to ResNet-18 on the CIFAR-10 dataset. Com-
paring the two tables, we can observe that the strongest
black-box attacks (e.g., DI-FGSM and NAttack) are still
weaker than white-box attacks (e.g., C&W), meeting the re-
quirement (i). Fig. S2a shows robustness of our method
and vanilla PGD adversarial training under PGD attacks
with various number of iterations. The robustness does in-
deed decrease with increasing number of iterations, meet-
ing the requirement (ii). Fig. S2b shows robustness of the
two methods under PGD attacks with various perturbation
bounds ϵ under ℓ∞-norm. Similarly, the robustness de-
creases with increasing ϵ, and it reaches 0% accuracy under
unbounded attacks, thus meeting the requirement (iii).
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