
A. Implementation Details

We describe the implementation details of our frame-
work for generalizable INRs via instance pattern com-
posers. In all experiments of this study, our transformer-
based hypernetwork with 768 hidden dimensions consists
of six self-attention blocks with 12 attention heads, where
each attention head has 64 dimensions. We use Adam [3]
with β1 = 0.9, β2 = 0.999, and the constant learning rate
of 0.0001 to train our transformers. The training epochs are
different in experiments, and we describe the details below.
Given a rank r of U and V(n), and the hidden dimension
d of the MLP, we initialize U ∼ N (0, 1/

√
rd) for the sta-

bility of training, since we intend to scale the initialization
of W(n)

m as W
(n)
m ∼ N (0, 1/

√
d) while V(n) ∼ N (0, 1)

at initialization. We also use weight standardization [5] for
the weights of coordinate-based MLPs.

A.1. Audio Reconstruction

We train our framework on the train split of LibriSpeech-
clean [4] for the audio reconstruction, while evaluating on
its test split. We use 200 sizes of non-overlapping patches
to unfold and tokenize each audio instance, which is sam-
pled by 16kHz, and then a second of audio is expressed
as a sequence of 80 data tokens. Since we train our gen-
eralizable INRs to represent one or three seconds of au-
dios, we randomly crop training audio. For evaluation, we
trim a test audio instance into one or three seconds for au-
dio. We train both our framework and TransINR for 1,000
epochs. For a fair comparison with TransINR, which pre-
dicts 257 weight tokens, our transformer-based hypernet-
work predicts r = 256 weight tokens for instance pattern
composers. A coordinate-based MLP has five layers with
d = 256, where din = 1 and dout = 1.

A.2. Image Reconstruction

We evaluate our generalizable INRs on image recon-
struction on facial images such as CelebA [8] and FFHQ
[2], and natural images of ImageNette [1, 6]. We use a
zero-padding for 178×178 images to convert them into the
180×180 resolution, and use non-overlapping 9×9 patches
to represent an image as the sequence of 400 data tokens.
For 256×256 and 512×512 images, we use 16×16 and
32×32 size of non-overlapping patches, respectively. A
coordinate-based MLP has five layers with d = 256, where
din = 3 and dout = 3. We train our framework with
r = 256 and TransINR on 178×178 CelebA, FFHQ, and
ImageNette during 300, 1000, and 4000 epochs, respec-
tively, until the training converges.

For 256×256 and 512×512 FFHQ, a model is trained
during 400 epochs due to the limited computational re-
sources, but the performance consistently improves as we
train the model longer. In addition, considering the bal-

ance of computational costs of transformers and MLP for
high-resolution images, we subsample 10% of coordinates
to compute the mean-squared error.

A.3. Novel View Synthesis

We evaluate our framework with r = 256 on novel view
synthesis of a 3D object based on the ShapeNet Chairs,
Cars, and Lamps datasets. We follow the experimental set-
tings of previous studies, TransINR [1, 6], except for the
manual decay of learning rate in TransINR [1], but use a
constant learning rate until the training converges. We train
our framework and TransINR for 1000 epochs for Chairs
and Cars until the training converges. However, we use 400
epochs for Lamps, since TransINR starts overfitting after
400 epochs, although our framework consistently improves
the performance. Before we tokenize each image, we con-
catenate the starting point and direction of each emitted ray
from every pixel into the RGB channels of each pixel, and
then each spatial coordinate has nine channels of features.
Given 128×128 resolution of images per view, we use 8×8
non-overlapping patches to represent each image as the se-
quence of 256 data tokens. When multiple support views
are used, we concatenate the data tokens of each view as
one sequence. A coordinate-based MLP has six layers with
d = 256, din = 3, dout = 4. We use adaptive random sam-
pling [1] during the first epoch to stabilize the training. We
subsample 128 rays during training.

B. Examples of Novel View Synthesis
Figure B, we attach more examples of novel view syn-

thesis on ShapeNet Chairs, Cars, and Lamps by our frame-
work, where the number of support views is increased from
one to five. The quality of synthesized images increases
as the number of support views increases, while our frame-
work modulates only one weight matrix of the instance pat-
tern composer.

C. Comparison with overfitted INRs
Figure A shows the efficiency to represent data as INRs

with or without individual training of MLPs. Since our
framework exploits FFNets for INRs, we perform test-time
optimization (TTO) on FFNets initialized 1) randomly, 2)
by our meta-learning, and 3) by our transformer-based hy-
pernetwork. Since the inference time for weight modula-
tion is shorter than one optimization step, the time is neg-
ligible, while providing meaningful representations without
individual training of FFNets. When the number of train-
able parameters is equivalent, the PSNRs converge to sim-
ilar values after TTO, but our TTO w/ V(n) can maintain
interpretable structures in Figure D. When we optimize the
entire weights of INRs, our framework shows better perfor-
mance during training than random initialization.
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Figure A. Time/PSNR trade-off during training of randomly ini-
tialized FFNets and our generalizable INRs. Each FFNet is trained
per a sample in randomly selected 10 images in FFHQ 256×256.

D. Visualization Analysis of MLP Activations

After we separately train a coordinate-based MLP, de-
noted as FFNet [7], on each image, we visualize the acti-
vation patterns of each neuron in a layer over all coordi-
nate inputs. Since the two FFNets memorize their training
sample separately, the activation maps neither capture the
common representations across instances nor be easily in-
terpreted. On the other hand, Figure D shows that our gener-
alizable INRs can exploit the instance-agnostic pattern com-
position rule, which enables each neuron to capture com-
mon and interpretable structures across instances. The vi-
sualization of activation maps validates that our framework
enables the learned representations and pattern composition
rule of coordinate-based MLP to be effectively generalized
to unseen data instances.
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Figure B. The examples of Novel view synthesis on Chairs, Cars, and Lamps by our framework with one, three, four, and five support
views (a-d).



Figure C. Activation maps of two FFNets [7], which are separately trained to memorize each of the two images.



Figure D. Activation maps of two INRs predicted by our framework of generalizable INRs for each of the two images.
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