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A. Appendix

This supplementary material provides further analyses,
additional experimental results, and implementation details
that are left out from the main paper due to the space limit.

A.1. Effect of Deploying Semantic Hierarchy

In this section, we investigate the effect of deploying se-
mantic hierarchies by utilizing proxies. In particular, we
quantitatively compare our method with SoftTriple loss [6]
which can model intra-class variance of data by utilizing
multiple proxies per class. Table 2 shows the performance
of two proxy-based methods and the number of proxies they
used. In SoftTriple loss, 10 proxies are assigned per class,
and our method uses 512 hierarchical proxies in addition to
proxies for proxy anchor loss.

The result shows that SoftTriple loss lags significantly in
performance despite using a much larger amount of prox-
ies compared to our method. The main difference between
these methods is how they handle proxies. SoftTriple as-
signs multiple proxies per class, so their proxies can only
represent sub-classes of data and model intra-class variance.
On the other hand, proxies in our method can represent sub-
classes or super-classes as well as predefined classes, thus
allowing more flexibility in modeling more complex rela-
tions of data beyond intra-class variance.

A.2. Embedding Space Visualization

We further visualize the embedding space at the begin-
ning of training, such as Epoch 1, 3, 5, 7, and 10. The
results of visualization presented in Figure 1 show that the
earlier embedding space does not construct a hierarchical
structure between the embedding vectors and hierarchical
proxies, while this structure is gradually constructed as the
training epoch grows. Specifically, as training progresses,
the hierarchical proxies have ancestor-descendant relations
between sample or other proxies, where these proxies can
be regarded as predefined classes, sub-classes, and super-
classes. As a consequence, our method can discover the la-

Hyperparameters CUB Cars SOP In-Shop

total epochs 50 50 150 150
warm-up epochs 1 1 5 5
LR of the last layer ×1 ×1 ×102 ×102

weight decay 1e−2 1e−2 1e−4 1e−4

Table 1. Additional details of hyperparameters for network opti-
mization. LR denotes the learning rate, and its value denotes how
many times higher than the original learning rate.

tent semantic hierarchy of training data, which provides rich
and granular supervision beyond human-labeled classes.

A.3. More Qualitative Results

We further verify the effect of HIER in a qualitative
perspective. To this end, we present the qualitative re-
sults of our method, compared to those of a model opti-
mized by only a metric learning loss, LML in Eq. (9) of
the main paper. We take proxy anchor loss [3] as the met-
ric learning loss. Figure 2 presents the qualitative results
for the four public benchmark datasets, CUB [9], Cars [4],
SOP [7] and In-Shop [5]. These results demonstrate that our
method is robust against small inter-class variance (CUB
and SOP), viewpoint variation and distinct color (Cars), and
large intra-class variations and viewpoint changes (In-Shop)
by discovering and deploying a latent semantic hierarchy of
data, while the proxy anchor still suffers from those prob-
lems.

We note that all the results in the figure are obtained from
the fully unseen class samples. It implies that it allows the
proposed hierarchical regularizer to discover the latent se-
mantic hierarchy of data with no additional annotation for
the hierarchy; our method allows the embedding space to be
generalized well.

A.4. Additional Implementation Details

Since each dataset that we utilize to evaluate our method
has a different characteristic, we set different hyperparame-
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Methods

CUB Cars SOP In-Shop

#Proxies R@1 R@2 #Proxies R@1 R@2 #Proxies R@1 R@10 #Proxies R@1 R@10

SoftTriple [6] 1,000 72.7 82.7 980 83.2 90.2 113,180 80.9 91.3 39,970 88.5 97.3
PA + HIER (ours) 612 75.2 84.2 610 85.1 91.2 11,830 82.5 92.7 4,509 91.0 98.0

Table 2. Comparison between methods using proxies in terms of performance and the number of proxies on the four benchmark datasets.
In these experiments, the backbone network is initialized by weights of DeiT [8].

Epoch 1 Epoch 10 Epoch 50

Epoch 1 Epoch 10 Epoch 50

Epoch 7Epoch 5Epoch 3

Figure 1. UMAP visualizations of our embedding space learned on the train split of the Cars dataset at different epochs. Pink points
indicate hierarchical proxies, and other colors represent distinct classes. The gray line indicates the ancestor-descendant relation between
the hierarchical proxy and data points.

ters for network optimization according to each dataset. The
summary of the settings of hyperparameter for four datasets
are presented in Table 1. For all backbone network variants
(i.e., ViT-S [2], DeiT-S [8], and DINO [1]), our model is
trained with 50 epochs on CUB [9] and Cars [4], and 150
epochs on SOP [7] and In-Shop [5]. As a warm-up strat-
egy, the last layer which consists of a linear layer followed
by the exponential mapping layer is only trained, while the
pretrained backbone network is not updated; the warm-up
strategy is applied for 1 epoch on CUB and Cars, and 5
epochs on SOP and In-Shop. On the other hand, we use a
high learning rate for the last layer (i.e., embedding layer)
by scaling 102 times for SOP and In-Shop. Furthermore,
we set the weight decay factor as 1e−2 for CUB and Cars,
and 1e−4 for SOP and In-Shop.
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Figure 2. Qualitative results of ours and proxy anchor on the four public benchmark datasets, CUB (a), Cars (b), SOP (c), and In-Shop (d).
Queries and the top 4 retrieval results of our method are presented. The true and false matches are colored in green and red, respectively.
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