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This supplementary material provides details and addi-
tional results of our method that have not been presented in
the main paper due to the page limit. In Section A, we first
provides further implementation details for each feature ex-
tractor settings. We present additional experimental results
including in-depth analysis of the model, results on the ad-
ditional benchmarks, more ablation studies, and embedding
space visualization in Section B. Finally, Section C presents
more qualitative results for the set prediction module.

A. Implementation Details
Our model is implemented with PyTorch [9] v 1.8.1. Au-

tomatic mixed precision is used for faster and more efficient
training. In addition to implementation details provided in
the main paper, training settings vary based on feature ex-
tractors.
ResNet-152 + bi-GRU: In this setting, the model is trained
for 120 epochs with the initial learning rate of 1e-3 and
2e-3 on COCO and Flickr30K, respectively. The learn-
ing rate for the set prediction module is scaled by 0.1 and
0.01 on COCO and Flickr30K, respectively. The learning
rate decays by a multiplicative factor of 0.1 for every 10
epochs. Following [10], the CNN is not trained for the first
50 epochs. Training is performed using a single RTX 3090
GPU.
Faster-RCNN + bi-GRU: The learning rate for the set pre-
diction module is scaled by 0.1 and 0.05 on COCO and
Flickr30K, respectively. Following [4], we drop 20% of
ROI features and words during training. Training is per-
formed using a single RTX 3090 GPU.
ResNeXt-101 + BERT: In this setting, we construct a batch
with 128 images and their entire matching captions. The
model is trained for 50 epochs with the initial learning rate
of 1e-4, where the learning rate decays by a multiplicative
factor of 0.1 for every 20 epochs. Following [4], the learn-
ing rate for CNN is scaled by 0.1. The statistics of the batch
normalization [3] layer are fixed during training. The CNN
is not trained in the first epoch. In the first epoch, triplet loss
without mining is used, whereas the hardest negative min-
ing is used for later epochs. Training is performed using
two A100 PCIe GPU.

Image-to-text Text-to-image
ECCV Caption CxC ECCV Caption CxC

mAP@R R-P R@1 R@1 mAP@R R-P R@1 R@1

VSRN 30.8 42.9 73.8 55.1 53.8 60.8 89.2 42.6
VSE1 34.8 45.4 81.1 67.9 50.0 57.5 91.8 53.7

Ours 36.0 46.4 84.7 72.3 51.0 58.5 91.6 55.5

Table A1. mAP@R, R-Precision, and Recall@1 are reported for
both ECCV Caption and CrissCrossed Caption (CxC). Results on
image-to-text retrieval and text-to-image retrieval are reported.

B. Additional Experiments
B.1. In-Depth Computation Cost Analysis

In addition to the computation cost analysis presented in
the main paper, we compare our method with SCAN [5] and
VSE1 [4], focusing on FLOP and latencies. FLOPs and
latencies are measured during computing similarity score
between data and then obtaining nearest top-10 retrieval re-
sult on Flickr30K validation. Given the cost of VSE1 as
1 in terms of FLOPs, our method has an approximate cost
of 16, while SCAN has a cost of 1,280. VSE1, Ours, and
SCAN have latencies of 159ms, 168ms, and 198,121ms, re-
spectively. While our model is substantially more efficient
than cross-attention based methods like SCAN, it demands
more computation than single embedding methods such as
VSE1.

Nevertheless, we observed that when increasing the em-
bedding dimension of VSE1 to match the FLOPs of ours,
it results in performance drop of 10.8%p on Flickr30K
RSUM. This finding indicates that the improvement we
achieved is not merely due to the additional computation,
but rather stems from our set-based embedding approach.

B.2. Results on ECCV Caption and CrissCrossed
Caption

Recently, benchmarks for the cross-modal retrieval, such
as CrissCrossed Caption (CxC) [8] and ECCV Caption [2],
have been proposed to address the missing correspondences
issue in conventional benchmarks. In particular, within the
COCO dataset, each caption associated with only one im-
age, while each image is matched with five different cap-
tions. This missing correspondence leads to a large numbers
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Figure A1. t-SNE visualization of the embedding spaces. Visu-
alized marker represent elements of embedding sets. Color and
shape of the markers denote corresponding slots and modality of
the data, respectively.

of false-negatives, as captions that may accurately describe
other images are overlooked during testing, thus obstruct-
ing the correct evaluation of the models. CxC and ECCV
caption mitigate the false-negative issue by introducing re-
established correspondences between images and captions
in the COCO test split.

For the comprehensive evaluation of our model, we re-
port the results of our best model on CxC and ECCV
caption, in the Table A1. We compare our method with
VSRN [6] and VSE1 [4], which are reported to achieve
previous best results on ECCV caption and CxC, respec-
tively [2]. It is important to note, however, that VSRN is
one of the machine annotators used to construct the ECCV
Caption dataset itself, which may introduce potential ma-
chine bias into the dataset and result in inflated evaluations.
Despite this, our work achieves the best or second-best per-
formance in every metric, which is particularly noteworthy
given that the results on ECCV caption are known to have a
low correlation with those on conventional benchmarks.

B.3. Ablation Study of Architectural Modification
to Slot Attention

As described in the Section 2 of the main paper, we
made three modifications to the original slot attention [7]:
(1) using learnable embeddings for initial element slots, (2)
replacing GRU [1] with a residual sum, and (3) adding a
global feature into the final element slots. Without these
modifications, training failed, yielding a COCO 5K RSUM
of 0.74. Ablations of (1), (2), and (3) result in COCO
5K RSUM of 427.2 (-3.5%p), 423.3 (-7.4%p), and 342.0
(-88.7%p), respectively. It is evident that (3) has the most
substantial impact on retrieval performance. This is because
a global feature effectively addresses samples with little am-
biguity, particularly during the early stages of training when
addressing semantic ambiguity is challenging for the net-
work. However, this does not imply that global features
dominate the embedding set, as verified by the high circular
variance in Table 3 of the main paper.

B.4. t-SNE Visualization of Embedding Space
Figure A1 visualizes embedding spaces of our model

trained with different similairty functions through t-SNE.
Each marker represents an embedding set element, and its
color and shape indicate the corresponding slot and modal-
ity, respectively. The visualization shows two side effects of
MIL and MP: sparse supervision and set collapsing. MIL
leaves some slots untrained, which is observed as clusters
of elements produced from the same slots. Conversely, MP
suffers from the set collapsing, making it difficult to distin-
guish set elements in t-SNE, as also verified with the small
within-set circular variance in Table 3 of the main paper.
Unlike MIL and MP, our smooth-Chamfer similarity en-
ables learning of a model that takes account of every set el-
ement, maintaining sufficient within-set variance to encode
semantic ambiguity.

C. Additional Qualitative Results
In Figure A2 and Figure A3, we present additional vi-

sualization of attention map from the visual set prediction
module fV . Visualizations of attention maps, including
ones presented in the main paper, are obtained from the
model using ResNeXt + BERT feature extractors. Atten-
tion maps from each iteration are presented together, where
t = 4 is the last iteration. For each attention map from
the last iteration, its corresponding element of embedding
set and nearest caption are provided together. Results show
that the aggregation block produces heterogeneous attention
maps capturing various semantics, such as different objects
(1st row of Figure A2) and action (2nd row of Figure A3).
Moreover, in every case, we can observe that element slots
are progressively updated to capture distinctive semantics,
starting from sparse and noisy attention maps.

Specifically, in Figure A3, we present the examples
where the nearest captions of multiple elements are the
same. For instance, in the 2nd row of Figure A3, each
element attends to individual entities (sky, larger giraffe,
grassy area, and baby giraffe), but their nearest captions,
which describe the entire scene, are the same. Results im-
ply that by fusing element slots with the global feature, ele-
ments of the embedding set can preserve the global context
while focusing on distinctive semantics. These character-
istics help model when samples with little ambiguity are
given, such as a caption describing the entire scene (2nd
row of Figure A3) or an image containing a single iconic
entity (3rd row of Figure A3).
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t=1 t=2 t=3 t=4

R1: A giant teddy bear laid across a couch. 

R1: A place with several materials that is 
comfortable.

R1: A very large stuffed toy on a couch.

R1: The huge stuffed bear is lying on a 
couch.

R1: An old coutnry store has a display of 
stuffed animals outside.

R1: Picture of an outdoor place that is very 
beautiful.

R1: A park is full of patrons on a fall day.

R1: A country store with several teddy 
bears and geese there.

R1: A man in a robe eating a chocolate donut.

R1: Here is a soul in the image alone. 

R1: A hairy man eating a chocolate doughnut 
in his house.

R1: A man is holding a chocolate dessert in 
his hand as he stares ahead.

R1: A cowboy rides a horse down a city street.

R1: An individual enjoying itself on a sunny 
day.

R1: Man riding white horse in the street while 
others watch.

R1: A man on a horse walking down the 
middle of a street.

Figure A2. For each element of the image embedding set, we present its attention map and the caption nearest to the element in the
embedding space. Matching captions are colored in green. Entities corresponding to the attention maps are underlined.



t=1 t=2 t=3 t=4

R1: A baby giraffe is lying down in an enclosed 
grassy area while a larger giraffe is walking around.

R1: Some animals that are around the grass 
together.

R1: A baby giraffe is lying down in an enclosed 
grassy area while a larger giraffe is walking around.

R1: A baby giraffe is lying down in an enclosed 
grassy area while a larger giraffe is walking around.

R1: Short train coming down the tacks in the middle 
of the woods.

R1: The train is traveling down the railroad tracks. 

R1: a train travels along a curved forest track.

R1: a train travels along a curved forest track.

R1: Baseball game with batter swinging and large 
crowd in field.

R1: THERE IS A BASEBALL GAME GOING ON 

R1: Many fans are in a stadium watching a baseball 
game.

R1: Baseball game with batter swinging and large 
crowd in fields.

R1: A crowd of people on a street with a "Stop" sign 
being held up.

R1: Picture of an outdoor place that is very 
beautiful.

R1: A crowd of people on a street with a "Stop" sign 
being held up.

R1: A crowd of people on a street with a "Stop" sign
being held up.

Figure A3. For each element of the image embedding set, we present its attention map and the caption nearest to the element in the
embedding space. Matching captions are colored in green. Entities corresponding to the attention maps are underlined.


