
A. Training Details
We apply BPE dropout with a rate of 0.1. We also ap-

ply residual and attention dropouts with a rate of 0.1, and
label smoothing for both image and text loss computation
with a rate of 0.1. We train both ARGVLT and MAGVLT
models using AdamW optimizer with β1 = 0.9, β2 = 0.96,
ϵ = 10−8, weight decay coefficient of 4.5 × 10−2, and the
learning rate of 4.5 × 10−4 with a cosine annealing. The
gradients are clipped by a norm using a threshold of 4, prior
to applying the Adam update. When training ARGVLT, we
observe that calculating the predictive losses on the con-
text tokens along with the generation tokens improves the
overall performance. Hence, we compute the losses on the
whole concatenated token sequence with the loss coeffi-
cients to 0.9 and 0.1 for generation modality and conditional
modality, respectively. The data augmentations used in [46]
are applied to the images before encoding them using VQ-
GAN. For positional embedding, we adopt a learnable abso-
lute position encoding, for both image and text modalities.
The encoded image tokens are flattened by the raster scan
order before being fed into the transformer. MAGVLT was
trained on 128 V100 GPUs for 40K updates with a batch
size of 4,096, which takes about 3 days.

Table 8 describes the detailed architecture hyperparame-
ters for the transformers we used including the large mod-
els.

Parameter Model

ARG/MAGVLT ARG/MAGVLTLarge

Params 371M 840M
Layers 24 36

Embed Dim 1024 1280
Heads 8 10

Table 8. Detailed architecture hyperparmeters. The left model
column represents the default model described in the main paper,
while the right column indicates the large model that will be pre-
sented in the next section.

B. Model Scaling
It is well known that scaling up the pretrained gener-

ative model generally improves the generalization ability,
and recently VL models often have more than 1B param-
eters. Therefore, we also scale up our VLTs and evaluate
those for the tasks of zero-shot I2T and T2I on MS-COCO.
As shown in Table 8, the large model (MAGVLTLarge) con-
tains 840M parameters for the transformer and 916M pa-
rameters including VQ-GAN in total. MAGVLTLarge was
trained on 128 V100 GPUs for 80K updates with a batch
size of 4096, which takes about 12 days.

The zero-shot T2I results on MS-COCO are shown in Ta-
ble 9. Notably, the large-scale models of both VLTs signif-
icantly improve FID and IS scores with large margin, com-

Model FID (↓) IS (↑) Speed
ARGVLT 16.93 22.50 1.00×
ARGVLTLarge 13.01 23.75 0.51×
MAGVLT 12.08 22.75 8.12×
MAGVLTLarge 10.14 25.15 6.97×

Table 9. Zero-shot T2I results on MS-COCO validation.

pared to their respective default models. In addition, the de-
gree of sampling speed reduction by model scaling is rela-
tively smaller in MAGVLT than that in ARGVLT. Note that
MAGVLTLarge is slightly slower than the default MAGVLT
(6.97× vs 8.12×), however it is still much faster than the
default ARGVLT which has much fewer parameters.

Model CIDEr SPICE
MS-COCO
ARGVLT 45.5 11.2
ARGVLTLarge 43.6 11.2
MAGVLT 60.4 14.3
MAGVLTLarge 68.1 15.5
NoCaps
ARGVLT 33.4 6.4
ARGVLTLarge 34.1 6.1
MAGVLT 46.3 8.7
MAGVLTLarge 55.8 9.8

Table 10. Zero-shot I2T results on MS-COCO Karpathy test (Top)
and NoCaps validation (Bottom).

The zero-shot I2T results on MS-COCO and NoCaps
datasets are presented in Table 10. Similar to the T2I re-
sults, the large-scale models of both VLTs show better I2T
scores compared to their respective default models. Note
that in case of ARGVLT, the performance gap between the
default and large models is marginal on MS-COCO dataset,
while MAGVLT improves the performance significantly on
both datasets, as the model size is increased. These results
imply that our MAGVLT is more effective in model scaling.

C. Finetuning on Downstream Tasks
In order to verify the transferability of MAGVLT by

task-specific finetuning, we perform finetuning on two
downstream tasks, one for generation and the other for
understanding. In this finetuning setting, ARGVLT and
MAGVLT are initialized from their 40K pretrained check-
point, and MAGVLTLarge is initialized from 60K pretrained
checkpoint.

Image Captioning. We finetune ARGVLT and MAGVLT
on the image caption generation task of MS-COCO 2014
dataset. In specific, we finetune the VLTs with the cross
entropy loss for 100 epochs with a batch size of 512. The
learning rate is set to 10−5 for ARGVLT and MAGVLT, and



2×10−5 for MAGVLTLarge. Note that we do not use the ad-
ditional tasks, UnrollMask and MixSel, in finetuning. The
captioning performances are presented in Table 11. Simi-
lar to zero-shot I2T results, MAGVLT shows better results
compared to ARGVLT. Moreover, the large-scale model of
MAGVLT improves the performances compared to its re-
spective default model.

Model B-4 M C S
ARGVLT 28.6 25.2 94.7 18.1
MAGVLT 29.3 27.1 103.3 20.5
MAGVLTLarge 32.3 27.9 110.7 21.0

Table 11. Comparisons of finetuned models on MS-COCO Karpa-
thy splits.

Visual Question Answering. Masked pretraining is well
known as a good representation learning approach for VL
understanding tasks. Therefore, even though we use a vari-
able mask ratio rather than a low fixed ratio during train-
ing for obtaining generation capability of MAGVLT, we can
also evaluate the transferability of MAGVLT on a discrim-
inative task. For this, we perform experiments on visual
question answering (VQA) task, which is a VL understand-
ing task that requires a model to answer a question given
an image, on the commonly used VQAv2 dataset [23]. Fol-
lowing [64], we treat this task as a classification task where
an auxiliary classifier predicts an answer from 3,129 can-
didates. The tokens of the question mark ‘?’ and <MASK>
token are sequentially added to the tail of the input sequence
[X;Y ] where [·] is the concatenation operator. The top layer
output of <MASK> is used as an input for the classifier. We
finetune the classifier and the corresponding model with the
cross entropy loss for 20 epochs with a batch size of 2,048
and a learning rate of 5× 10−5, and the dropout rate of the
top layer output is set to 0.6.

The results are shown in Table 12. Compared to the lat-
est algorithms [14, 25], MAGVLT performs slightly worse,
however it can be confirmed that the discriminative repre-
sentation for understanding has been learned by MAGVLT
to some extent. While VLKD [14] and MetaLM [25]
use large-scale language-only data and leverage a language
model, we pretrain our model from scratch using only
paired image-text datasets. And, our model is basically
trained for generation, and moreover, it can even generate
images by a single model.

Model test-dev test-std
VLKDViT-B/16 [14] 69.8 -
MetaLM [25] 74.4 74.5
MAGVLT 63.0 63.4
MAGVLTLarge 65.7 66.2

Table 12. Experimental results on VQAv2.

D. Unconditional Image+Text Generation Re-
sult

Since we train MAGVLT with the three multi-modal
tasks including IT2IT, the model is able to produce both
image and text at a time. Namely, all of the tokens of X and
Y are masked at first, and then refined through the iterative
decoding. For the target length prediction, the target length
is randomly initialized in a range from 8 to 16 and then iter-
atively predicted as the refinement step proceeds. Here, we
provide unconditional image+text generation results which
are presented in Figure 8. Note that the generated images
are very diverse and generally have high quality, and the
generated texts also describe the images properly.

E. MixSel Analysis
Here, we demonstrate the effectiveness of the proposed

MixSel task. As described in subsection 3.4, MixSel mixes
two different contexts and selects one of them to be used
for generation. We hypothesize that our MixSel training
task allows the model to attend more carefully to the proper
cross-modal context and accordingly to reduce the over-
looking of the cross-modal context. In order to verify this,
we first consider MixRandom setting which is the same as
MixSel, but different in that the target is randomly selected
without the additional special token to inform which one is
selected, i.e.<LEFT> and <RIGHT> or <TOP> and <BOT-
TOM>. This MixRandom can be seen as the perturbation of
the input context alone for regularization like data augmen-
tations. In Table 13, MAGVLTMixRandom, which indicates
the trained MAGVLT along with UnrollMask and MixRan-
dom, deteriorates the performances of both the zero-shot
I2T and the zero-shot T2I, in comparison to MAGVLT with
the use of MixSel training.

Model CIDEr (↑) FID (↓)
MAGVLTMixSel 60.4 12.08
MAGVLTMixRandom 57.9 13.43

Table 13. Comparison of MixSel and MixRandom on Zero-shot
I2T and T2I.

Furthermore, in Figure 9, we qualitatively show by vi-
sualization of cross-modal attention maps that MixSel pre-
training task makes the model to attend more to the cross-
modal context appropriately compared to the model trained
without MixSel training.

F. Additional Samples
Here, we present more qualitative results of image and

text generation tasks described in subsection 4.2 and sub-
section 4.3. The image generation and inpainting results are
presented in Figure 10, Figure 11, respectively. The image
captioning and text infilling results are shown in Figure 12
and Figure 13, respectively. For text generation tasks, we



resize and center-crop the validation images. Overall, our
proposed MAGVLT shows better results than ARGVLT.



Figure 8. Unconditional image+text generation results obtained by MAGVLT. Note that the generated images cover diverse categories,
such as natural scenery (1st row), indoor scenes & foods (2nd row), animals (3rd row), objects (4th row), and illustrations (5th row). Also,
the generated texts are well aligned with generated images.



Figure 9. Visualization of cross-modal attention maps and generated images at different refinement steps. Given the text ”a picture of
bus in the street.”, images are generated using MAGVLTs trained without the use of UnrollMask and MixSel (Top) and with the use of
UnrollMask and MixSel (Bottom). To visualize each attention map, cross-attention scores between all 256 image tokens (queries) and a
specific text token (a key, corresponds to each row) are computed and then reshaped to 16x16. Image tokens more attend to object text
tokens (<bus> and <street>) when the model trained with the use of UnrollMask and MixSel.



Figure 10. More samples of text to image on MS-COCO dataset.



Figure 11. Image inpainting samples on MS-COCO dataset. MAGVLT generated the masked parts to be more blended with the surround-
ing context, and more proper to the captions.



Figure 12. More samples of image captioning on MS-COCO dataset.



Figure 13. Text infilling samples on MS-COCO dataset. The locations to be infilled are shaded with orange color. The words infilled by
MAGVLT are better aligned with the surrounding context words, and more appropriate on the corresponding images.
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