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In this supplementary material, we provide additional ex-
perimental results, implementation details, and qualitative
results to complement the main paper.

A. t-SNE Visualization

Visualization for different identities images. To explain
the effectiveness of our PartMix, we show the feature distri-
bution of part descriptor with different identities in Fig. 1.
For visualizing the feature distribution, the complex feature
distributions are transformed into two-dimensional points
based on t-SNE [2]. Each color represents the M different
part maps. We can confirm that t-SNE visualization of part
descriptors that have different semantic meanings are clus-
tered into distinct groups. And we can also find that the part
descriptor with the same human part information (e.g., short
sleeve) are clustered into the same groups. In Fig. 2, we
visualize an additional example for the feature distribution
of part descriptors with different identities. These two im-
ages do not share the human parts information, and thus our
PartMix effectively divides part descriptors into different
groups. By this visualization, we can demonstrate that our
PartMix can capture different human part information and
synthesize unseen combination of human parts (i.e. the un-
seen identity), improving generalization ability on unseen
identity as demonstrated in the Sec 4.4 of the main paper.
In addition, it can distinguish the different person identities
through the combination of human parts.

B. Loss functions

Following the baseline [4], we adopt several losses, in-
cluding modality learning loss Ly, modality specific ID
loss Lgq, center cluster loss L., and identity classification
loss Liq. In this section, we describe these losses in detail.

Modality Learning Loss. Modality learning loss [4] aims
to encourage the modality-specific classifier to estimate
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consistent classification scores for the same identity fea-
tures regardless of the modality. We make the classifica-
tion scores of visible (infrared) person descriptors estimated
by the visible (infrared) and mean infrared (visible) specific
classifier to be similar through the KL divergence, and thus
the model learns modality invariant person descriptors.

Ly, = ZdKL d)||Cr(d,))
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where C,(-), C,(-) denote visible and infrared classifiers,
and the mean classifiers of those ones are C,(-), C,(+), re-
spectively.
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Modality Specific ID Loss. For modality learning loss,
we train the modality-specific classifiers to learn modality-
specific knowledge from visible and infrared person de-
scriptors such that
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where C,, and C, are visible and infrared classifier.
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Center Cluster Loss. To enhance the discriminative
power of the person descriptor, we adopt center cluster
loss [4] to penalize the distances between the person de-
scriptors and their corresponding identity centers.
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where z,,,2,,, and z,, is the mean descriptor that corre-
spond to the y;, yx, and y4 identity in mini-batch, P is the
number of identity in the mini-batch, and p is the least mar-
gin between the centers.

ID Loss To learn identity-specific feature representation
across the modalities, we adopt cross-entropy loss between
the identity probabilities and their ground-truth identities as
follows:
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where C(-) is an identity classifier.

C. More Implementation Details

Training Details. To train our network, we first conduct
warm up the baseline [4] for 20 epochs, to stabilize the part
detector at the early stage of training and boost the con-
vergence of training. For a fair comparison with the base-
line [4], we then optimize the model for 100 epochs us-
ing overall losses. We also adopt random cropping, random
horizontal flipping, and random erasing [7] for data aug-
mentation. We set 128 images for each mini-batch. For each
mini-batch, we randomly sample 8 images with 16 iden-
tities and the images are re-sized as 384 x128. We select
positive samples and negative samples through the entropy-
based mining module. For each training sample, we set the
number of positive U’ and negative samples @)’ as 2 and
20. To optimize the model, we utilize the Adam optimizer,
where the initial learning rate is set to 3.5 x 10~%, which
decays at 80" and 120*" epoch with a decay factor of 0.1.
Through the cross-validation using grid-search, we set the
hyper-parameters Asig, AML, Acont, and Agiq as 0.5, 2.5,
0.5, and 0.5, respectively. The proposed method was imple-
mented in the Pytorch library [1]. We conduct all experi-
ments using a single RTX A6000 GPU.

D. Other Regularization Methods Details

Mixup [6]. Following the work [6], we synthesize the
mixed images by linearly interpolating image and label
pairs such that
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where !, 22 are randomly sampled images in mini-batch
regardless of their modality, y', y? are its corresponding
identity, and A is the combination ratio sampled from the
beta distribution Beta(a, o), where the « is set to 1.

Manifold MixUp [3]. We also synthesize the mixed
training samples using Manifold MixUp [3] that applies
MixUp [6] in the hidden feature space as follows :

F = Ay(axh) + (1 = NE,(2?),

_ (6)

g=M\"+ (1= Ny
where £,(x) denotes a forward pass until randomly chosen
layer g. We also sample the combination ratio A from the
beta distribution 3(«, o), where the « is set as 1.

CutMix [5]. We generate training samples with CutMix
operation as follows:

F=Moz' +(1-M)o?
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where M is a binary mask, 1 is a binary mask filled
with ones, ® is element-wise multiplication, and the set-
ting of A is identical to Mixup [6]. To sample the mask
M, we uniformly sample the bounding box coordinates
B = (b, by, by, by,) such that

by ~ Unif(0, W), by = WVI— A,

(¥
by ~ Unif(0, H),b, = HV1 — X,

where W, H is width and height of the person image and
Unif(-,-) denotes a uniform distribution.
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Figure 1. Visualization on the feature distribution of part descriptor with different identity images. Data projection in 2-D space is
attained by t-SNE based on the feature representation. Each color represents the different human parts. Our PartMix effectively clusters
the same human part information (e.g., short sleeve) in the same group (represented using a dotted circle), while the different human parts
are divided into different groups.
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Figure 2. Visualization of the feature distribution of part descriptor with different identity images. The details are the same as above.
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