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A. Appendix
In this supplementary material, we provide additional ex-

perimental results and analysis to support our method in-
cluding qualitative results.

A.1. Performance Comparison with Deeper Back-
bone

Table A1 compares recent HOI methods with ours
using deeper backbone network on HICO-DET [2] and
V-COCO [4] benchmarks. We observe that our pro-
posed method with Resnet-50 backbone outperforms pre-
vious transformer-based methods with Resnet-101 back-
bone. Especially, MUREN gains significant improvement
over UPT [9] with Resnet101-DC5 by 7.5%p and 3.9%p
on two scenarios in V-COCO, respectively. MUREN with
Resnet-101 backbone further increases this gap to 8.3%p
and 5.3%p. It shows the effectiveness of MUREN.

Method Backbone HICO-DET V-COCO
Default Known Object AP#1

role AP#2
role

HoiTrans [11] R101 26.61 29.13 - -
QPIC [6] R101 29.90 32.38 58.3 60.7
CDN [8] R101 32.07 35.05 63.9 65.9
UPT [9] R101 32.31 35.65 60.7 66.2
UPT [9] R101-DC5 32.62 31.41 61.3 67.1

MUREN R50 32.87 35.52 68.8 71.0
MUREN R101 33.28 35.85 69.6 72.4

Table A1. Performance comparison with deeper backbone. We
report mAP on Full split for HICO-DET [2] and role average pre-
cision (AProle) under two scenarios for V-COCO [4].

A.2. Model Complexity Analysis

In Table A2, we report FLOPS and the number of pa-
rameters to analyze model complexity compared with pre-
vious transformer-based methods. Following DisTR [10],
we compute average FLOPS over the first 100 images in
the V-COCO test set with the tool flop count operators

from Detectron2 [7]. We observe that MUREN has com-
parable FLOPS compared with existing HOI methods.
MUREN only introduces 4.9% extra FLOPS compared
with DisTR, a state-of-the-art two-branch method, although
MUREN has one more branch than two-branch architec-
ture. MUREN-M and MUREN-S are the same MUREN
model used in the experiments of our main paper but with
smaller numbers of parameters (we make these smaller
models simply by decreasing the number of branch layer L).
The results show that all our models clearly outperform pre-
vious methods in both scenarios, AP#1

role and AP#2
role, with

comparable or less FLOPS and inference time. In partic-
ular, the smallest of ours, MUREN-S, performs better than
the state-of-the-art two-branch method, DisTR, by 1.1%p in
both scenarios, while it consumes 2.3M smaller parameters
and 3.1G less FLOPS than DisTR.

Method Backbone AP#1
role AP#2

role Params (M) FLOPS(G)

QPIC [6] R50 58.8 61.0 41.68 87.87
QPIC [6] R101 58.3 60.62 156.18

AS-Net† [3] R50 53.9 - 52.75 88.86
HOTR† [5] R50 55.2 51.41 88.78

HOITrans [11] R101 52.9 60.62 156
CDN† [8] R50 63.9 64.4 51.14 93.19

DisTR† [10] R50 66.2 57.31 94.23

MUREN R50 68.8 71.0 69.3 98.7
MUREN-M R50 68.3 70.6 59.6 93.6
MUREN-S R50 67.3 69.6 55.0 91.1

Table A2. Model complexity comparison. † indicates two-branch
methods. Following DisTR [10], we report role average precision
on V-COCO test set, the number of parameters, and FLOPS.

A.3. Impact of Sequential Embedding

We utilize fine-grained context information (unary and
pairwise relation contexts) to enrich holistic context infor-
mation (triple relation context). For this, we embed the
unary and the pairwise relation contexts to the triplet re-
lation context in a sequential manner. To investigate the im-
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pact of sequential embedding, we replace sequential embed-
ding with parallel embedding. Specifically, the input query
of cross attention in Eq. 9 is replaced with the results of
Eq. 2. Then, we combine unary-embedded and pairwise-
embedded triplet context with MLP to generate a multiplex
relation context as follows:

f̃HOI
i = CrossAttn(fHOI

i , Ui), (A1)

f̂HOI
i = CrossAttn(fHOI

i , Pi), (A2)

mi = CrossAttn(MLP([f̃HOI
i ; f̂HOI

i ]),X). (A3)

As shown in Table A3, the performance drops by 1.33%p
and 1.28%p in the two scenarios. Additionally, we change
the unary-pairwise embedding order to pairwise-unary. We
observe that the performance drops by 1.51%p and 1.41%p
in the two scenarios.

Method AP#1
role AP#2

role

MUREN 68.8 71.0
w.o sequential embedding 67.4 69.7
w. pairwise-unary order 67.2 69.6

w.o sequential embedding 64.7 67.1

Table A3. The impact of sequential embedding.

A.4. Impact of intermediate loss

As shown in Table A4, we observe that removing the in-
termediate loss from MUREN decreases the performance
by 4.1%p in scenario #1 and 3.9%p in scenario #2. As
observed in DETR [1], the intermediate supervision tends
to improve detecting the correct number of object of each
class. Similarly, DETR-like HOI methods learn to detect
the correct number of HOI instance of each HOI class with
the intermediate supervision.

Method AP#1
role AP#2

role

MUREN 68.8 71.0
w.o intermediate loss 64.7 67.1

Table A4. Impact of intermediate loss.

A.5. Additional Qualitative Results

In this section, we show additional qualitative results
to analyze MUREN and compare MUREN with CDN [8].
CDN adopts two-branch architecture where one is respon-
sible for human-object pair detection (i.e., human-object
branch) and the other for interaction classification (i.e., in-
teraction branch). As shown in Figure A1, CDN fails to

find HOI instances in complicated scenes. In contrast,
MUREN successfully detects HOI instances as we utilize
the multiplex relation context in an HOI instance for rela-
tional reasoning. Moreover, we observe that the human-
object branch of CDN, which is responsible for human-
object pair detection, tends to focus only on an object to de-
tect human-object pairs in Figure A2a. It might lead to inac-
curate localization of human since they ignore human con-
text information. However, we have designed three-branch
architecture to focus on each sub-tasks. Therefore, MUREN
properly localizes the human and the object as shown in
Figure A2b. In Figure A3, we also show more visualization
of cross-attention maps in MUREN. Our proposed method
focuses on the region that contains the context information
for each sub-task (b-d column in Figure A3). Moreover,
the multiplex relation embedding module (MURE) focuses
on the region that contains the context information about all
sub-task for relational reasoning (e column in Figure A3).
Especially, our proposed method properly attends to the
regions for discovering the HOI instance in complicated
scenes (2,3 row in Figure A3). More qualitative results for
detected HOI instances can be found in Figures A4 and A5.
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(b) riding a car (c) holding an umbrella (e) riding a snowboard (a) riding a motorcycle

Figure A1. Visualization of HOI detection results. First row: HOI detection results from CDN [8]. Second row: HOI detection results
from MUREN. Red boxes, blue boxes and green lines indicate humans, objects, and interactions, respectively. Our proposed method
successfully detects HOI instances with the relation context information in complicated scenes.
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(a) Visualization of HOI detection results and cross-attention maps from CDN [8]
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(b) Visualization of HOI detection results and cross-attention maps from MUREN

Figure A2. Visualization of HOI detection results and cross-attention maps. (a) human-object and interaction branch columns indicate the
cross-attention map from human-object branch and interaction branch, respectively. (b) visualization of the cross-attention maps in each
branch and the multiplex relation embedding module (MURE). All cross-attention maps come from the last layer of each branch. Red
boxes, blue boxes and green lines indicate humans, objects, and interactions, respectively.
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(b) human branch (c) object branch (d) interaction branch (e) MURE(a) detection result

Figure A3. Visualization of HOI detection results and cross-attention maps in each branch and the multiplex relation embedding module
(MURE). All cross-attention maps come from the last layer of each branch. Red boxes, blue boxes and green lines indicate humans,
objects, and interactions, respectively.

(c) swing a baseball bat

(g) sitting at a dining table

(k) sitting at a chair 

(d) riding a bicycle

(h) riding a motorcycle

(l) jumping a ski

(a) flying an airplane

(e) riding a car

(i) holding a surfboard

(b) carrying a backpack

(f) hugging a cat

(j) washing a car

Figure A4. Visualization of HOI detection results on HICO-DET [2]. Red boxes, blue boxes and green lines indicate humans, objects, and
interactions, respectively.



(a) working on a computer (b) riding a motorcycle (c) kicking a sports ball (d) throwing a sports ball

(e) holding a surfboard (f) surfing a surfboard (g) riding a boat (h) reading a book

(i) catching a frisbee (j) riding a horse (k) sitting at a bench (l) eating a donut

Figure A5. Visualization of HOI detection results on V-COCO [4]. Red boxes, blue boxes and green lines indicate humans, objects, and
interactions, respectively.
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