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1. Experimental details
1.1. Sequential data and image classification

In each convolution filter, SMPConv has 30 weight
points for 1D and 16 weight points for 2D. For SMP-
Conv1D, we sample the point locations from zero mean
truncated gaussian distribution with σ = 0.1. Because of
causal convolution, we sample in the range (−1, 0) rather
than (−1, 1). For SMPConv2D, we sample the point lo-
cations from 2D zero mean truncated gaussian with Σ =
[[σ1, 0], [0, σ2]], where σ1 = σ2 = 0.05. We initialize ra-
dius as r ≈ 2

kd, where k is kernel size and d is dimension
of input (i.e., d = 1 for 1D, d = 2 for 2D). In 2D, the kernel
size means the width of the kernel. The size of the addi-
tional small kernel is 5 for 1D and 3×3 for 2D, respectively.
Following FlexConv [7], we use batch normalization [4] af-
ter convolution and skip connection.

We train our networks using Adam [5] optimizer. We
use a cosine annealing learning rate scheduling with warm-
up epochs. The learning rate for radius parameters is set
to be 0.1× smaller than the regular learning rate. During
the training, the radius range is clipped from 0.0001 to 0.1.
More details for each data are shown in Tab. 1. For se-
quential data experiments, we train our model with a single
NVIDIA A100 GPU. We use a single RTX3090 GPU for
CIFAR10 experiments.

1.2. Image classification on ImageNet-1k

Our large-scale variants of SMPConv networks have the
same architecture as RepLKNet [3] except for large kernel
convolution, which is replaced by our SMP. Like [3], we
set the kernel size of each stage to [31, 29, 27, 13] and use
additional 5 × 5 convolution for reparameterization trick.
We use ⌊k2

4 ⌋ weight points for each SMP depth-wise ver-
sion, which shares weight points over channels, where k is
the kernel size of corresponding each block. The point loca-
tions and radius are initialized in the same way as Sec. 1.1
SMPConv2D with σ1 = σ2 = 0.2.

Our models are trained for 300 epochs using AdamW [6]
optimizer. We set the batch size of 2048. The ini-
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tial learning rate is set to 4 × 10−3 with cosine anneal-
ing scheduling and 10 warm-up epochs. We use Ran-
dAugment [1] in Timm [9](”rand-m9-mstd0.5-inc1”), La-
bel Smoothing [8] coefficient of 0.1, Mixup [11] with α =
0.8, Cutmix [10] with α = 1.0, Rand Erasing [12] with
probability of 25%, Stochastic Depth with drop path rate
of 10% for SMPConv-T, and 50% for SMPConv-B, and
model EMA(exponential moving average) with a decay fac-
tor of 0.9999. For fast depth-wise convolution computation,
we use block-wise(inverse) implicit gemm algorithm imple-
mented by [3]. We train both SMPConv-T and SMPConv-
B with 4 NVIDIA A100 GPUs.

2. Additional results
2.1. Larger kernels

We set the kernel size of each stage to [31, 29, 27,
13] for large-scale variants of SMPConv networks follow-
ing RepLKNet [3]. Although the current kernel sizes are
larger than conventional convolution, we evaluate whether
our model is trained without performance degradation even
when using larger kernels.

To conduct this experiment, we design a new variant,
SMPConv-mobile. For the mobile variant, the number of
blocks and the number of channels for each stage is [2, 2, 2,
2] and [64, 128, 256, 320], respectively. Also, we use ⌊k2

8 ⌋
weight points for each SMP and reduce the expansion ratio
of feed-forward networks from 4 to 2. We train this vari-
ant for 120 epochs and do not use Stochastic Depth. Other
training settings are same as Sec. 1.2. We set the kernel size
of each stage to [31, 29, 27, 13] for SMPConv-mobile31 and
[51, 49, 47, 13] for SMPConv-mobile51.

In ImageNet-1k [2] image classification, SMPConv-
mobile31 and SMPConv-mobile51 get 73.5% and 73.7%
top-1 accuracy, respectively. Thus, using our SMP, convo-
lution kernel sizes can be increased without performance
degradation, even in large-scale data.
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sMNIST pMNIST sCIFAR10 CT SC SC-raw CIFAR10
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