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1. Introduction
This supplementary material provides more descriptions

of the proposed method as follows. First, the detailed archi-
tecture of the proposed method is presented in Section 2.
In the following, implementation details of the proposed
method are explained in Section 3. Finally, additional qual-
itative results and visual materials with the analysis follow
in Section 4.

2. Architecture Details
The proposed method consists of two main parts: feature

sampling and mesh regression. We clarify the configuration
of hyper-parameters for each part in the following subsec-
tions.

2.1. Feature sampling

To sample vertex-relevant features in the embedding
space, we adopt HRNet-W32 [19] as the backbone network,
which is trained based on three 2D pose datasets [9, 12, 20]
and one human detection dataset [16], by following [17].
The backbone feature Xb is decoded through heatmap, fea-
ture, and grid feature decoders, respectively (see Fig. 1).
Specifically, heatmap and feature decoders take X1

b ∈
RC×H×W (where C = 32 and H = W = 56), which
is encoded through the top path of HRNet as their inputs as
shown in Fig. 1. On the other hand, the input of the grid fea-
ture decoder is extracted from the bottom path of the back-
bone as X2

b ∈ R8C×H/8×W/8 to consider the global con-
text of the input image. The detailed architecture of each
decoder is provided in Table 1.

2.2. Mesh regression

Our sampled features are reshaped as the vertex token,
i.e., V̂ ∈ RN×D where N and D are set to 431 and 512,
respectively. Similarly, grid features are also input to the
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Figure 1. The detailed process by which the backbone features are
input into each decoder. Note that we present a simplified version
of the HRNet backbone in this figure for compact representation.

Decoder architecture

Module Layer type Input dim. Output dim.

Heatmap decoder
1× 1 Conv. 32 431
ResBlock [4] 431 431
ResBlock [4] 431 431

Feature decoder
1× 1 Conv. 32 512
ResBlock [4] 512 512
ResBlock [4] 512 512

Grid feature decoder
1× 1 Conv. 256 512
ResBlock [4] 512 512

Table 1. The detailed architecture of heatmap, feature, and grid
feature decoders.

transformer encoder as the grid token Ĝ ∈ RZ×D where
Z is set to 49(= 7 × 7). On the other hand, the joint to-
ken Ĵ ∈ RK×D is randomly initialized and optimized re-
gardless of the feature sampling process. Here K is set to
14, which indicates the number of keypoints of the human
body. Moreover, we leverage the vertex token to generate
the camera token T̂ ∈ R1×D by a single linear layer. The
camera token is updated to estimate the camera parameter
which is utilized for projecting 3D joint positions onto the
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Figure 2. The detailed architecture of the sequence of transformer encoders in the proposed method.

2D space when calculating the 2D joint loss. Note that the
camera token is implicitly optimized by using projected 2D
joints. Such four types of tokens are updated through the
sequence of transformer encoders to reconstruct the 3D hu-
man mesh. The detailed architecture is illustrated in Fig 2.
Specifically, two transformer blocks, which consist of two
transformer encoders respectively, are stacked with linear
projectors for reducing the dimension of tokens from 512
to 128, and from 128 to 3 (corresponding to 3D coordi-
nates). Each transformer encoder conducts multi-head self-
attention where our progressive attention masking scheme
is applied.

3. Implementation Details

In this Section, we provide detailed explanations about
benchmark datasets that we adopted in this work, the op-
timization process of the vertex estimation, the computa-
tional costs of our proposed network, and the ablation study
according to different settings of our masking scheme.

3.1. Datasets

Human3.6M [5] is a multi-view 3D pose dataset collected
by using the motion capture system in the indoor environ-
ment. This dataset consists of videos taken with five female
and six male subjects from 17 different scenarios. Our pro-
posed method is trained using subjects S1, S5, S6, S7, and
S8, and evaluated with subjects S9 and S11.
3DPW [18] is the most widely employed dataset for the
3D human pose estimation since it contains various real-
world images with 3D pose and shape annotations. This
dataset is composed of 60 video sequences recorded with
seven individual subjects.
MuCo-3DHP [14] is constructed based on multiple-human
scenes, which are synthesized by using the MPI-INF-
3DHP [13] dataset, to consider strong inter-person occlu-
sions in complex backgrounds.
UP-3D [8] consists of various outdoor images with 2D
joint annotations and pseudo labels of the 3D human mesh,
which are obtained by using [2].

Methods # of Params FPS MPJPE PA-MPJPE
METRO [10] 230.4M 19.55 54.0 36.7
MeshGraphormer [11] 226.5M 18.67 51.2 34.5
FastMETRO [3] 153.0M 21.88 52.2 33.7
Ours 59.1M 21.83 48.3 32.9

Table 2. Comparison of the computational costs with the perfor-
mance for previous model-free methods based on the Human3.6M
dataset. Note that FPS of each method is recomputed on our ex-
perimental environment for the fair comparison.

COCO [12] contains images taken under the real-life con-
text, which are labeled with 2D joint annotations. We also
employed the pseudo labels provided by [6] for the ground
truth of the 3D human mesh.
MPII [1] is collected from YouTube videos. This dataset
includes large amounts of images that capture diverse hu-
man activities and corresponding 2D joint annotations.
FreiHAND [21] is the first large-scale real-world dataset
for 3D hand pose and shape estimation, which is annotated
by high-quality labels with 21 hand keypoints. This dataset
is used to demonstrate the generalization ability of our pro-
posed method. Note that we use test-time augmentation for
the performance evaluation of the proposed method.

3.2. Vertex Optimization

Since the SMPL model has been most widely adopted for
3D human representation, the total number of vertices con-
stituting a full body mesh generally follows that of SMPL,
i.e., 6,890. However, estimating such a large number of
vertices at once probably causes the problem of redundancy
in prediction due to the spatial locality of vertices as men-
tioned in [7]. Therefore, we first estimate sparse vertices
and then expand them into dense vertices for efficient train-
ing just like previous model-free methods. More concretely,
the ground truth of the vertex is compressed twice with a
factor of 4 (i.e., 6,890→1,732→431), based on the down-
sampling technique introduced in [15]. After such 431 ver-
tices are estimated from the sequence of transformer en-
coders, upsampling is performed in a reverse way (i.e.,
431→1,732→6,890) to make a full body structure by using



Figure 3. More results of 3D human mesh reconstruction by the proposed method on the 3DPW dataset.

Figure 4. More results of 3D human mesh reconstruction by the proposed method on the COCO dataset.



Distance threshold for
MPJPE PA-MPJPEdefining vertex connection (M )

Enc1 Enc2 Enc3 Enc4
✗ ✗ ✗ ✗ 50.9 33.3
✗ ✗ 3 1 50.7 33.8
✗ 5 3 1 49.9 33.7
7 5 3 1 48.3 32.9

Table 3. Performance analysis of the proposed method according
to the change of progressive attention masking based on the Hu-
man3.6M dataset. Note that Enc(·) indicates each transformer en-
coder shown in Fig. 2. The number in the left side (i.e., 1, 3, 5, and
7) denotes the distance threshold for computing self-attentions.

the pre-defined matrix U [15]. These three types of ver-
tex estimation are respectively guided by each ground truth,
which is generated during the downsampling process, via
their own vertex loss. By doing this, the computational cost
in terms of memory and time for training the network can
be reduced as well.

3.3. Computational Costs

By giving the vertex-relevant information to the se-
quence of transformer encoders, the proposed method can
efficiently learn to reconstruct the 3D human mesh even
with low computational requirements. Table 2 shows the
computational costs in terms of the number of parameters
and the run-time speed (fps). As can be seen, a notably
small number of trainable parameters is required for the
proposed network compared to previous methods, which
leads to reduction of the overall training time. For exam-
ple, it takes five days to train the proposed network for
50 epochs with two NVIDIA RTX A6000 GPUs. More-
over, the proposed method shows the competitive process-
ing speed while outperforming previous methods.

3.4. Ablation Study

To investigate the advantage of the proposed progressive
attention masking scheme, we conduct more comparative
experiments and corresponding results are shown in Table 3.
As can be seen, the performance of MPJPE is improved as
more masks are used in a progressive manner, while PA-
MPJPE is slightly dropped when not all the encoders use
masks, compared to the baseline model. It is noteworthy
that the proposed method, i.e., the case when progressive
attention masking is applied to all the transformer encoders,
shows the best performance as shown in the bottom row of
Table 3. Based on this result, it is thought that our progres-
sive attention masking is helpful for improving the perfor-
mance of 3D human mesh reconstruction.

Figure 5. Some failure cases of the proposed method on the COCO
dataset. From left to right: input images, visualization of the ac-
tivated positions on the left person in the heatmap, visualization
of the activated positions on the right person in the heatmap, and
results of 3D human mesh reconstruction.

4. Additional Visual Materials

4.1. Qualitative Results

In this subsection, we provide the analysis of qualitative
results by the proposed method and then discuss about the
failure cases.

Analysis of qualitative results. Several examples of the 3D
human mesh reconstruction for 3DPW [18] and COCO [12]
are shown in Figs. 3 and 4, respectively. As can be seen, 3D
meshes are accurately fitted to the target body region un-
der real-world environments. In particular, the proposed
method is robust to self-occlusions occurring in extreme
poses, e.g., the first rows of Fig. 3 and 4, by effectively
focusing on features sampled at each vertex point. Further-
more, since the proposed method also considers the local re-
lation between vertices by progressive attention masking, it
yields the reliable result of 3D human mesh reconstruction
even in object-occluded situations as shown in the second
rows of Fig. 3 and 4.

Discussion of failure cases. Some failure cases of the pro-
posed method are shown in Fig. 5. As can be seen, the
proposed method often suffers from ambiguities driven by
severe inter-person occlusions. Since our method relies
on the sampled feature, the incorrectly predicted heatmap
(which is utilized for point-guided feature sampling) may
adversely affect the result of 3D human mesh reconstruc-
tion. For example, we can see that the activated positions of
the heatmap appear on the region of two different persons
in a single frame, leading to generation of the invalid output
mesh in Fig. 5. To cope with this limitation, our future work
is to guide the network to distinguish individual persons in
multi-person situations with extreme occlusion.



Figure 6. Several examples of predicted heatmaps and the corresponding results of 3D human mesh reconstruction by the proposed method
on the 3DPW dataset. Note that the heatmaps are normalized before visualization. 1st column: input images. 2nd to 5th columns:
visualization of predicted heatmaps. 6th column: ground truth. 7th column: results of 3D human mesh reconstruction.

4.2. Heatmap Visualization

Figure 6 shows several examples of predicted heatmaps
and corresponding output meshes. Note that heatmaps for
the same vertex are presented in the same columns. It can
be seen that the heatmap decoder in our proposed method
successfully estimates positions of projected vertices. In
particular, the heatmap for the right hand is accurately pre-
dicted even with the severe occlusion (see the first example
of the fifth column in Fig. 6). From these examples, we can
see that such estimated heatmaps play a significant role to
generate the 3D human body fitted to the target body region
accurately as shown in the seventh column of Fig. 6.
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