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1. Limitations

We point out some limitations of the present work which
could be possibly settled in the future works.
Large-scale encoder and decoder. In recent works
[13–15] for OCL, Transformer [17] is adopted as an en-
coder [13] or decoder [14, 15] to handle the complex
scenes. In step with these works, expanding SLASH with a
Transformer-like encoder and decoder is a promising path
for tiding over high-resolution images with complex real-
world scenes.
Slot communication. As the SLASH directly inherits
the Slot Attention [11], our model has a similar limitation
with the Slot Attention, that is, the absence of communica-
tion between slots in the Slot Attention module. SLASH has
another module which could be improved with slot com-
munication: Point Predictor in IPPE. The Point Predictor in
SLASH yields 2D coordinates without considering the re-
lationship between slots. A communicable predictor where
the model prevents redundant or omitted points can be de-
vised in future works.
Background-related modeling. Our method does not
care about any inductive bias or specific modeling for the
background. As we found out that the background noise
induces training instability in OCL, understanding back-
ground with external inductive bias can directly help mod-
els to be trained in a consistent way. We expect this to be
done by a novel architecture with an additional criterion or
ground truth signal to teach models the background knowl-
edge.
Slot Initializer. Our model still contains the previous slot
initializer using the Gaussian distribution with the learnable
mean and sigma. We expect that replacing this slot initial-
izer with a new one having some inductive biases concern-
ing OCL can prevent noisy attention maps generated in the
early iteration of the Slot Attention module.

mIoU ARI fg-ARI
CLEVR10

SA [11]‡ 36.6 ± 24.8 — 95.9 ± 2.4
MONet [1]‡ 30.7 ± 14.9 — 54.5 ± 11.4
IODINE [5]‡ 45.1 ± 17.9 — 93.8 ± 0.8
GenV2 [3]‡ 9.5 ± 0.6 — 57.9 ± 20.4
SLASH∗ 49.7 ± 6.0 82.0 ± 14.2 94.9 ± 1.2

Table 1. Results of the object discovery task (mean ± std reported
in %). ‡ stands for the scores recorded in [10] with 3 trials and
data-specific center crop. The scores of SLASH is calculated with
10 trials.

2. Broader Impact
In this work, we adopt inductive biases and a weak semi-

supervision scheme to achieve stable and robust OCL on the
top of the Slot Attention [11]. Since the Slot Attention is a
generic soft k-mean clustering algorithm, there is room for
applying our approach to various domains where data has
compositional characteristics. Not limited to vision tasks, it
is expected that the motivation of our method can be applied
to various domains and tasks, such as speech decomposition
[12, 16], or music source separation [2, 6].

3. Experiments
3.1. Additional Dataset: CLEVR10

We provide additional results on the CLEVR10 dataset.
As shown in Tab. 1, SLASH outperforms in all metrics,
recording the highest average scores and low standard de-
viations, representing robustness and stability. Unlike the
other models, our model solves the task without any data-
specific pre-processing, i.e. center crop. Note that, in the
CLEVR, as objects are crowded in the middle of images,
this center crop can benefit the training and testing of the
models.
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mIoU ARI fg-ARI
CLEVRTEX

SA (τ = 1) [11] 22.2 ± 4.3 38.1 ± 12.5 52.1 ± 5.9
SA (τ = 2) 25.6 ± 2.0 39.6 ± 3.7 54.9 ± 2.7
SA (τ = 5) 19.0 ± 4.0 25.8 ± 11.6 48.3 ± 4.3
SA-LRE (0.25) 28.6 ± 9.8 44.2 ± 19.7 62.3 ± 12.6
SA-LRE (0.5) 27.2 ± 10.8 41.6 ± 22.5 59.7 ± 14.5
Gau (σ = (0.01, 1.0)) 25.2 ± 4.9 38.8 ± 12.9 58.9 ± 4.8
Gau (σ = (0.1, 2.0)) 26.0 ± 8.5 43.5 ± 14.6 55.9 ± 11.0
Gau (σ = (1.0, 5.0)) 24.7 ± 3.1 42.1 ± 7.4 55.2 ± 2.8
Conv 24.8 ± 6.0 42.5 ± 9.7 54.3 ± 11.1
WNConv (3× 3) 28.8 ± 6.6 47.4 ± 14.3 58.0 ± 4.8
WNConv (5× 5) 31.4 ± 6.6 55.6 ± 13.2 57.8 ± 7.7
WNConv (7× 7) 29.0 ± 5.0 50.1 ± 15.4 59.6 ± 5.6

PTR
SA (τ = 1) 17.6 ± 14.7 19.6 ± 29.8 44.5 ± 18.8
SA (τ = 2) 34.3 ± 12.0 56.6 ± 26.5 50.0 ± 7.9
SA (τ = 5) 33.7 ± 16.4 47.3 ± 32.4 56.7 ± 10.1
SA-LRE (0.25) 32.4 ± 19.1 40.1 ± 35.1 61.5 ± 7.0
SA-LRE (0.5) 35.5 ± 15.6 54.5 ± 34.1 62.1 ± 4.5
Gau (σ = (0.01, 1.0)) 22.6 ± 13.1 25.7 ± 8.4 56.4 ± 6.4
Gau (σ = (0.1, 2.0)) 20.6 ± 15.1 20.0 ± 29.9 53.8 ± 10.2
Gau (σ = (1.0, 5.0)) 20.2 ± 14.7 28.3 ± 31.4 58.4 ± 3.9
Conv 12.4 ± 9.7 11.6 ± 13.1 32.1 ± 26.0
WNConv (3× 3) 41.4 ± 11.1 60.5 ± 21.2 60.3 ± 3.5
WNConv (5× 5) 43.8 ± 3.0 62.3 ± 19.4 60.4 ± 3.2
WNConv (7× 7) 40.2 ± 5.0 58.7 ± 24.3 61.0 ± 3.6

Table 2. Results of object discovery on the possible alternatives for
ARK (mean ± std for 10 trials, reported in %). τ is the temper-
ature in an attention mechanism. SA-LRE stands for Slot Atten-
tion with Low Resolution Encoder with the ratio of downsampling.
Gaussian model (Gau) is given with the standard deviation σ with
its min and max value. We use σ = (0.1, 2.0) in the main paper
as the default one. We mark WNConv (5× 5), which is the setting
for our method, as bold text.

3.2. Additional Alternatives for ARK

Tab. 2 describes an additional ablation study on the alter-
natives for the ARK. For the global smoothing technique,
we include one more Slot Attention model with a temper-
ature value of 5.0. In addition, the Slot Attention models
with a low-resolution encoder, which we term SA-LRE, are
added to the line of global smoothing methods.

For the alternative kernels of the WNConv, we provide
the results of Gaussian smoothing with distinct standard de-
viations. We also conduct experiments on the different ker-
nel sizes of WNConv, where we use 5× 5 as a default one.

It can be easily observed that our proposed method and
choice of the default WNConv show the most consistent and
robust performance over the other alternatives.

3.3. Level of Semi-supervision

We conduct ablation studies on the level of semi-
supervision according to two aspects: the number of im-
ages and objects. To inspect the sole impact of the weak
semi-supervision, we only add the IPPE module to the Slot

imgs objs mIoU ARI fg-ARI
CLEVRTEX

5%
75%

22.4 ± 3.1 34.2 ± 10.0 53.2 ± 6.8
10% 25.1 ± 7.4 40.4 ± 15.6 54.9 ± 7.3
20% 26.7 ± 6.5 43.0 ± 7.1 56.9 ± 9.2

10%
50% 24.6 ± 5.2 41.3 ± 11.0 56.6 ± 7.8
75% 25.1 ± 7.4 40.4 ± 15.6 54.9 ± 7.3
100% 25.6 ± 8.9 41.5 ± 17.3 53.6 ± 7.3

100% 100% 27.5 ± 5.0 47.4 ± 10.5 57.7 ± 8.0
PTR

5%
75%

32.6 ± 14.1 54.3 ± 33.0 51.7 ± 5.3
10% 38.4 ± 12.8 58.4 ± 31.3 58.5 ± 3.1
20% 39.8 ± 14.2 59.4 ± 32.8 59.8 ± 3.2

10%
50% 34.9 ± 15.6 53.3 ± 32.7 58.2 ± 3.4
75% 38.4 ± 12.8 58.4 ± 31.3 58.5 ± 3.1
100% 38.6 ± 11.9 62.1 ± 27.6 58.1 ± 2.4

100% 100% 39.4 ± 10.8 66.5 ± 21.7 60.4 ± 8.2

Table 3. Results of ablation studies on the level of the semi su-
pervision for the model of Slot Attention + IPPE which is shown
as ‘+IPPE’ in Tab. 2 in the main paper (mean ± std for 10 trials,
reported in %). The ratio of the number of images and objects is
described in the table. We mark the 10% for images and 75% for
objects, which is the setting for our method, as bold text.

Attention model, i.e. SLASH without the ARK module. As
shown in Tab. 3, we trained models by assigning ground
truth annotations to 5, 10, 20, and 100% of images from a
given dataset, and 50, 75, and 100% of objects in a given
image. The results show that as the ratio of weak supervi-
sion ground truths grows, SLASH can perform better in the
object discovery task. Furthermore, the full supervision, de-
noted as 100% and 100%, helps SLASH achieve the most
consistent and high scores in both mIoU and ARI metrics.

4. Qualitative Results
4.1. Intermediate and Final Results of SLASH

To investigate the overall process of SLASH, we visual-
ize the intermediate attention maps of each slot in addition
to the final results of the SLASH in Fig. 1, Fig. 2, Fig. 3,
Fig. 4 for CLEVR6, CLEVRTEX, PTR, and MOVi, respec-
tively.

Given an input (leftmost in the first row), SLASH iter-
atively updates the slots during which the attention maps
between the slots and the feature vector are generated (first,
third, and fifth rows). The attention maps before ARK de-
pict our observation of salt-and-pepper patterns. Then ARK
is applied to the attention maps to make the refined atten-
tion maps (second, fourth, and sixth rows). The noisy at-
tention maps are cleansed by ARK so that the background
noise is erased and the object pattern is strengthened. After
T = 3 iterations, the decoder produces the segmentation
masks (seventh row) and reconstruction images (last row).



4.2. Model Comparisons

In this section, we qualitatively compare the baseline
Slot Attention (SA), a newly introduced weakly semi-
supervised baseline WS-SA, and our model SLASH. For
the fair comparison, we select the model which performs the
second-best and the second-worst in the mIoU metric. The
results of second-best and second-worst models for each
dataset – CLEVR6 (Fig. 5, Fig. 6), CLEVRTEX(Fig. 7,
Fig. 8), PTR(Fig. 9, Fig. 10), MOVi(Fig. 11, Fig. 12) – are
illustrated below.

For the figure details, the first row contains the atten-
tion maps of K slots; K = 11 for CLEVRTEX, K = 7
otherwise. The second row contains the ground truth seg-
mentation mask (leftmost), the aggregation of the predicted
segmentation mask (second from the left), and the predicted
segmentation masks for K slots. The last row contains the
input image (leftmost), the final reconstructed image (sec-
ond from the left), and the reconstructed images of K slots.

The results of the second-best models show that all the
models perform well, where SLASH is superior to the other
models in terms of robustness against background noise.
The main difference comes from the results of the second-
worst models. As mentioned in Sec. 4.4 in the main ta-
ble, various types of the bleeding issue occur in the dif-
ferent datasets: irregular bleeding in CLEVR6, bleeding to
background patterns in CLEVRTEX, the striping issue in
PTR. In addition, for the MOVi dataset, we observe that the
models, except for the SLASH, split the image into several
blocks with less relation to objects. In contrast, even with
the second-worst models, the SLASH accomplishes stable
and robust outcomes across all datasets.

5. Implementation Details

5.1. Model

As our method is built on Slot Attention [11], the im-
plementation of the Slot Attention module is just the same
as [11]. Thus, in this section, we only describe the de-
tails for Attention Refining Kernel (ARK) and Intermediate
Point Predictor and Encoder (IPPE).

ARK is a 5 × 5 single-channel single-layer convolutional
kernel having only 25 learnable parameters and no bias. By
applying SAME padding, the output size will be the same
size as the input size.

IPPE has two submodules, Point Predictor and Point En-
coder, consisting of 3-layer MLP with ReLU activation
(Tab. 4). Point Predictor takes a slot of Dslot dimension
and yields 2D coordinates (x, y). Point Encoder encodes
a 2D point (x, y) into a vector of Dslot dimension. In our
implementation, Dslot = 64 and −0.5 < x, y < 0.5.

Type Size (Input/Output) Activation
Point Predictor

MLP 64/32 ReLU
MLP 32/16 ReLU
MLP 16/2 –

Point Encoder
MLP 2/16 ReLU
MLP 16/32 ReLU
MLP 32/64 –

Table 4. Model details of IPPE.

5.2. Dataset

We use CLEVR dataset [8], also called CLEVR10, given
by Multi-Object Datasets [9]. We split the CLEVR10
dataset into 70K and 15K for training and test set, respec-
tively. We filtered out scenes containing more than six ob-
jects to compose CLEVR6 from the CLEVR dataset. As a
result, in the CLEVR6 dataset, the training and test set have
35,050 and 7,492 images, respectively.

PTR dataset [7] is sourced from the official project page
1. Also, for PTR, we utilize the validation set as a test set
to use the ground truth segmentation masks for evaluation.
CLEVRTEX dataset [10] is also sourced from the official
project page 2. We use part 1-4 for the training set and
part 5 for the test set; we do not use the other variants of
CLEVRTEX for our work.

For the MOVi dataset, we utilize the dataset generator
provided by Kubric [4] in the official repository 3. Although
Kubric provides diverse variants of MOVi, we only focus on
MOVi-C to -E for the following reasons: 1) MOVi-A and -
B contains relatively simple objects compared to the other
variants; 2) MOVi-F is for training optical flow predictor.
Moreover, the only difference among MOVi-C, -D, and -
E is in the dynamics of objects or camera view. We col-
lected static images from MOVi-C, -D, and -E, and termed
it MOVi or MOVi-C as there is no meaning to distinguish
MOVi-C, -D, and -E in consideration of static image. In
details, we set the number of static objects from 3 to 6 in
a scene. For the clear observation of objects, we set the
height of the camera greater than or equal to 5.0 in the half
sphere whose radius ranges from 7 to 9. For data collection,
only the first frames of the rendered videos are selected to
prevent the existence of the same scenes in the dataset.

1http://ptr.csail.mit.edu
2https://www.robots.ox.ac.uk/ vgg/data/clevrtex/
3https://github.com/google-research/kubric



Figure 1. The intermediate and the final results of SLASH on CLEVR6. You can find the figure details in Sec. 4.1.



Figure 2. The intermediate and the final results of SLASH on CLEVRTEX. You can find the figure details in Sec. 4.1.



Figure 3. The intermediate and the final results of SLASH on PTR. You can find the figure details in Sec. 4.1.



Figure 4. The intermediate and the final results of SLASH on MOVi. You can find the figure details in Sec. 4.1.



Slot Attention
mIoU:   0.6265
ARI:      0.9474
fg-ARI: 0.9656

WS-SA
mIoU:   0.6509
ARI:      0.9199
fg-ARI: 0.9590

SLASH
mIoU:   0.6712
ARI:      0.9357
fg-ARI: 0.9291

Figure 5. Results on CLEVR6 by the second-best models from SA, WS-SA and SLASH. You can find the figure details in Sec. 4.2.]



Slot Attention
mIoU:   0.2100
ARI:      0.0787
fg-ARI: 0.9881

WS-SA
mIoU:   0.5655
ARI:      0.8731
fg-ARI: 0.9101

SLASH
mIoU:   0.6091
ARI:      0.8778
fg-ARI: 0.9506

Figure 6. Results on CLEVR6 by the second-worst models from SA, WS-SA and SLASH. You can find the figure details in Sec. 4.2.



WS-SA
mIoU:   0.2611
ARI:      0.3612
fg-ARI: 0.6222

SLASH
mIoU:   0.4091
ARI:      0.6707
fg-ARI: 0.7111

Slot Attention
mIoU:   0.2501
ARI:      0.4703
fg-ARI: 0.5730

Figure 7. Results on CLEVRTEX by the second-best models from SA, WS-SA and SLASH. You can find the figure details in Sec. 4.2.



Slot Attention
mIoU:   0.1614
ARI:      0.1728
fg-ARI: 0.4853

WS-SA
mIoU:   0.1831
ARI:      0.3010
fg-ARI: 0.4295

SLASH
mIoU:   0.2912
ARI:      0.5411
fg-ARI: 0.5311

Figure 8. Results on CLEVRTEX by the second-worst models from SA, WS-SA and SLASH. You can find the figure details in Sec. 4.2.



WS-SA

Slot Attention
mIoU:   0.4302
ARI:      0.7498
fg-ARI: 0.5962

WS-SA
mIoU:   0.4511
ARI:      0.7518
fg-ARI: 0.5911

SLASH
mIoU:   0.4812
ARI:      0.8109
fg-ARI: 0.5873

Figure 9. Results on PTR by the second-best models from SA, WS-SA and SLASH. You can find the figure details in Sec. 4.2.



WS-SA
mIoU:   0.1100
ARI:      0.0318
fg-ARI: 0.5770

SLASH
mIoU:   0.4512
ARI:      0.6441
fg-ARI: 0.6350

Slot Attention
mIoU:   0.0849
ARI:      0.0117
fg-ARI: 0.5571

Figure 10. Results on PTR by the second-worst models from SA, WS-SA and SLASH. You can find the figure details in Sec. 4.2.



Slot Attention
mIoU:   0.3206
ARI:      0.4810
fg-ARI: 0.5240

SLASH
mIoU:   0.3263
ARI:      0.4835
fg-ARI: 0.5225

WS-SA
mIoU:   0.3361
ARI:      0.4899
fg-ARI: 0.5212

Figure 11. Results on MOVi by the second-best models from SA, WS-SA and SLASH. You can find the figure details in Sec. 4.2.



Slot Attention
mIoU:   0.1189
ARI:      0.0401
fg-ARI: 0.4312

WS-SA
mIoU:   0.1036
ARI:      0.0354
fg-ARI: 0.3506

SLASH
mIoU:   0.2852
ARI:      0.2993
fg-ARI: 0.5658

Figure 12. Results on MOVi by the second-worst models from SA, WS-SA and SLASH. You can find the figure details in Sec. 4.2.
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[5] Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick
Watters, Christopher Burgess, Daniel Zoran, Loic Matthey,
Matthew Botvinick, and Alexander Lerchner. Multi-object
representation learning with iterative variational inference.
In ICML. PMLR, 2019. 1

[6] Romain Hennequin, Anis Khlif, Felix Voituret, and Manuel
Moussallam. Spleeter: a fast and efficient music source sep-
aration tool with pre-trained models. Journal of Open Source
Software, (50), 2020. 1

[7] Yining Hong, Li Yi, Joshua B Tenenbaum, Antonio Torralba,
and Chuang Gan. Ptr: A benchmark for part-based concep-
tual, relational, and physical reasoning. In NeurIPS, 2021.
3

[8] Justin Johnson, Bharath Hariharan, Laurens van der Maaten,
Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. Clevr:
A diagnostic dataset for compositional language and elemen-
tary visual reasoning. In CVPR, 2017. 3

[9] Rishabh Kabra, Chris Burgess, Loic Matthey,
Raphael Lopez Kaufman, Klaus Greff, Malcolm
Reynolds, and Alexander Lerchner. Multi-object datasets.
https://github.com/deepmind/multi-object-datasets/, 2019. 3

[10] Laurynas Karazija, Iro Laina, and Christian Rupprecht.
Clevrtex: A texture-rich benchmark for unsupervised multi-
object segmentation. In NeurIPS, 2021. 1, 3

[11] Francesco Locatello, Dirk Weissenborn, Thomas Un-
terthiner, Aravindh Mahendran, Georg Heigold, Jakob
Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-
centric learning with slot attention. In NeurIPS, 2020. 1, 2,
3

[12] Kaizhi Qian, Yang Zhang, Shiyu Chang, Mark Hasegawa-
Johnson, and David Cox. Unsupervised speech decomposi-
tion via triple information bottleneck. In International Con-
ference on Machine Learning. PMLR, 2020. 1

[13] Maximilian Seitzer, Max Horn, Andrii Zadaianchuk, Do-
minik Zietlow, Tianjun Xiao, Carl-Johann Simon-Gabriel,
Tong He, Zheng Zhang, Bernhard Schölkopf, Thomas Brox,
et al. Bridging the gap to real-world object-centric learning.
arXiv preprint arXiv:2209.14860, 2022. 1

[14] Gautam Singh, Fei Deng, and Sungjin Ahn. Illiterate dall-e
learns to compose. In ICLR, 2021. 1

[15] Gautam Singh, Yi-Fu Wu, and Sungjin Ahn. Simple unsu-
pervised object-centric learning for complex and naturalistic
videos. arXiv preprint arXiv:2205.14065, 2022. 1

[16] A P Varga and Roger K Moore. Hidden markov model de-
composition of speech and noise. In International Confer-
ence on Acoustics, Speech, and Signal Processing. IEEE,
1990. 1

[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 1


	. Limitations
	. Broader Impact
	. Experiments
	. Additional Dataset: CLEVR10
	. Additional Alternatives for ARK
	. Level of Semi-supervision

	. Qualitative Results
	. Intermediate and Final Results of SLASH
	. Model Comparisons

	. Implementation Details
	. Model
	. Dataset


