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This supplementary material provides label mapping,
implementation details, additional experimental results, and
visual results. In particular, the following contents are in-
cluded in the supplementary material:

• The label mapping for five datasets used in the experi-
ments to the common 10 classes.

• Implementation details of the proposed method and
baselines used in the experiments.

• Comparison with Complete&Label [13].

• Hyperparameter analysis of SIFC.

• Additional visual results.

A. Label Mapping
We present the label mapping of each class to

the selected 10 common classes for five datasets, Se-
manticKITTI [1], nuScenes-lidarseg [2], Waymo [10], Se-
manticPOSS [8], and SynLiDAR [12] in Table 1. To elabo-
rate on our choice of label mapping, we map the {bicyclist,
motorcyclist} classes to the {background} because both cy-
clist classes consist of a rider and transportation, and this
might lead to ambiguous predictions. The classes consisting
of only humans are mapped to {pedestrian}. For Semantic-
POSS, there are no corresponding classes for {motorcycle,
truck, other-vehicle, sidewalk}, we only use 5 classes for
evaluation. Also, the {trunk, plants} classes are normally
mapped to {vegetation}, but those classes in SemanticPOSS
actually contain {walkable} points, which is why we inte-
grate {vegetation} to {walkable} only for SemanticPOSS.

B. Implementation Details
For all experiments, we use Adam optimizer [5] with

lr=1e-3, β1=0.9, and β2=0.999 and batch size of 8. To vox-
elize the input point clouds, we first clip the data to fit the
fixed volume space. We set a different volume space for
each source dataset as in Table 2. Then, we voxelize the in-
put using a voxel size of 0.2m. During training, we augment

*The first two authors contributed equally. In alphabetical order.

the input point clouds by random rotation along the z-axis,
random flipping along the x, y, and x+y axis, arbitrary scal-
ing, and random translation. We do not use intensity values
and only use point cloud xyz coordinates.
Proposed Method. We use MinkowskiNet [3] as our
backbone network consisting of the encoder Φenc, de-
coder Φdec, and classifier C. Specifically, MinkUnet34 1

is used where the last final layer corresponds to the classi-
fier. The metric learner Ψ consists of 2-layer MLP whose
hidden layer dimension is 96 and output layer dimension
is 64. The loss weights (λ1, λ2) are (1, 10) for the Se-
manticKITTI, (0.3, 20) for the Waymo, (0.01, 0.1) for
nuScenes-lidarseg, and (0.05, 10) for the SynLiDAR. We
set threshold τ in SIFC to cos 45◦ = 0.707 and the aug-
mentation sampling parameters (pmin, pmax) are (0.3, 0.7)
for SemanticKITTI, Waymo, and SynLiDAR. The hyper-
parameters for nuScenes-lidarseg are τ = 0.84 and (pmin,
pmax) = (0.2, 0.4).

IBN-Net [7]. IBN-Net proposes to use a combination of In-
stance Normalization (IN) [11] and Batch Normalization [4]
to learn appearance invariant features while maintaining
content information. Among the variations of the IBN
block, we use the IBN-b block, which shows the best perfor-
mance in the semantic segmentation task. We add IN right
after the second conv layer (conv2) and the second, third
convolution group (conv3 x and conv4 x) of MinkUNet34.

MLDG [6]. MLDG proposes to utilize the meta-learning
scheme for domain generalization that simulates the do-
main shifts during training. Considering that we have a sin-
gle source domain, we split the source domain into meta-
train and meta-test sets. Depending on how we split the
source domain, we implement two variations: MLDG(A)
and MLDG(B). At each iteration, MLDG(A) randomly
splits the batch into two equal sized meta-train and meta-
test sets. On the other hand, MLDG(B) splits the batch us-
ing pre-trained model trained on the source domain. The
pre-trained model extracts the per-class features for each

1We use the official code of Minkowski Engine for the implementation
of MinkUNet34. Please refer to the code in
https://github.com/NVIDIA/MinkowskiEngine/blob/master/examples/min
kunet.py
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Table 1. Label mapping for SemanticKITTI [1], nuScenes-lidarseg [2], Waymo [10], SemanticPOSS [8], and SynLiDAR [12].

Common class SemanticKITTI nuScenes-lidarseg Waymo SemanticPOSS SynLiDAR
car car, moving-car vehicle.car car car car

bicycle bicycle vehicle.bicycle bicycle bike bicycle
motorcycle motorcycle vehicle.motorcycle motorcycle - motorcycle

truck truck, moving-truck vehicle.truck truck - pick-up, truck

other-vehicle
bus, moving-bus,

other-vehicle, moving-on-rails,
moving-other-vehicle

vehicle.bus.bendy,
vehicle.bus.rigid,

vehicle.construction,
vehicle.trailer

bus, other-vehicle - bus, other-vehicle

pedestrian person, moving-person

human.pedestrian.adult,
human.pedestrian.child,

human.pedestrian.construction worker,
human.pedestrian.police officer

pedestrian 1 person, 2+ person female, male, kid, crowd

drivable-surface road, parking, lane-marking flat.driveable surface road, lane-marker, other-ground ground road, parking
sidewalk sidewalk flat.sidewalk curb, sidewalk - sidewalk
walkable terrain flat.terrain walkable trunk, plants terrain

vegetation vegetation, trunk static.vegetation vegetation, trunk - vegetation, trunk

background

unlabeled, outlier,
bicyclist, motorcyclist,

other-ground, building, fence,
other-structure, pole, traffic-sign,
other-object, moving-bicyclist,

moving-motorcyclist

noise, animal,
human.pedestrian.personal.mobility,

human.pedestrian.stroller,
human.pedestrian.wheelchair,

movable object.barrier,
movable object.debris,

movable object.pushable pullable,
movable object.trafficcone,
static object.bicycle rack,

vehicle.emergency.ambulance,
vehicle.emergency.police,
static.other, vehicle.ego

undefined, motorcyclist,
bicyclist, sign, pole,

traffic-light, building,
construction-cone

rider, traffic-sign, pole,
building, garbage-can,

cone/stone, fence, unlabeled

unlabeled, other-ground,
bicyclist, motorcyclist,

building, other-structure,
traffic-sign, pole, traffic-cone,

fence, garbage-can, table,
chair, bench, other-object

Table 2. Volume space used for each dataset.

Dataset x(m) y(m) z(m)
SemanticKITTI [-50, 50] [-50, 50] [-4, 2]

nuScenes-lidarseg [-50, 50] [-50, 50] [-5, 3]
Waymo [-75, 75] [-75, 75] [-4, 2]

SemanticPOSS [-75, 75] [-75, 75] [-4, 4]
SynLiDAR [-75, 75] [-75, 75] [-5, 3]

data in the batch by aggregating the features of the decoder
outputs corresponding to each class. Then, we randomly
select a LiDAR scan for meta-train set, and find the re-
maining data whose cosine feature distances are close to
the selected one. Data with distant feature distances are
assigned to the meta-test set. After obtaining the training
sets, we follow the training procedure of [6] described in
Algorithm 1. The model parameters θ are first updated us-
ing meta-train loss Ltrain(θ) on the meta-train set. Then,
the updated parameters θ′ = θ − α∇θLtrain are virtually
evaluated through meta-test loss Ltest(θ

′) on the meta-test
set. The final objective is the combination of both losses,
Ltrain(θ) + βLtest(θ − α∇θLtrain). Finally, the parame-
ters are updated as follows:

θ = θ − γ
∂(Ltrain(θ) + βLtest(θ − α∇θLtrain))

∂θ
, (1)

where we use α = 0.005, β = 1, and γ = 0.001.

CoSMIX [9]. We follow the overall training settings of
original paper [9] and pre-train the model on the source
dataset for 10 epochs with weighted cross-entropy loss used
to train our base model. The teacher and student models

Algorithm 1 MLDG Baseline Training Procedure
Input: Source domain S, minibatch size B, meta learning
rate α, learning rate γ, loss weight β, loss function Lsem

Initialize: Parameters θ of model f at iter = 0
1: while iter < T do
2: Split S into Str, Ste following (A) or (B) setting
3: Meta-Training:
4: Ltrain(θ)← Lsem(fθ({ŷtrb }Bb=1}), {ỹtrb }Bb=1)
5: Update θ′ ← θ − α∇θLtrain

6: Meta-Testing:
7: Ltest(θ

′)← Lsem(fθ′({ŷteb }Bb=1}), {ỹteb }Bb=1)
8: Compute Ltrain(θ) + βLtest(θ

′)
9: Update θ ← θ − γ∇θ(Ltrain(θ) + βLtest(θ

′))
10: iter ← iter + 1
11: end while

used in the adaptation process are initialized with the pre-
trained weights. For SemanticKITTI→nuScenes-lidarseg
and SemanticKITTI→Waymo, we adapt for 4 epochs, and
the Waymo→SemanticKITII, Waymo→nuScenes-lidarseg
models are trained for 7 epochs. We follow the original pa-
per and set α=0.5, ζ=0.9, and all the other hyperparameters
are the same with the original setting.

C. Comparison with Complete&Label

Since Complete&Label [13] evaluated their method in a
DG setting with 2 classes (pedestrian and vehicle), we ad-
ditionally conduct comparative experiments. Since there is
no official code available, we compare our method with the
settings used in [13]. In Table 3, we show the quantita-



Table 3. Per-dataset mIoU(%) evaulated on SemanticKITTI (K)
and nuScenes-lidarseg (N) compared with the Complete&Label.
The Waymo dataset is used as the source domain.

Method K N
Base 55.0 42.9

Complete&Label [13] 59.6 49.8
Ours 79.9 68.1

Table 4. Results of using different sparsity and the threshold τ .

K N W P AM HM

Beam sampling ratio (%)
10-50 58.90 43.79 38.17 44.10 46.24 45.10
20-60 59.30 43.39 38.63 43.07 46.10 44.94
30-70 59.62 44.83 40.67 45.09 47.55 46.60

Threshold τ

0.9 59.95 44.02 38.46 43.82 46.56 45.34
0.7 59.62 44.83 40.67 45.09 47.55 46.60
0.5 60.44 44.24 41.31 44.47 47.62 46.60
0.3 60.06 44.49 39.11 43.07 46.69 45.50

tive comparison with [13] and report the mIoU of the two
classes. The results show that our method has better gener-
alization performance.

D. Hyperparameter Analysis of SIFC
We also conduct a hyperparameter analysis of SIFC us-

ing different levels of sparsity and threshold τ . As shown
in Table 4, the performance decreases as the augmented do-
main becomes sparser, as learning with sparse data of less
information is challenging. However, it can be seen that
the overall performance is robust to the degree of sparsity
variation of the augmented domain. Also, as the value of
τ decreases, performance improves but begins to decline
at τ=0.3. This confirms that aggregating unreliable nearby
features has negative effects.

E. Additional Visual Results
We provide additional qualitative comparisons between

the baselines and our method in the following figures.
Fig. 1, Fig. 2, Fig. 3 shows the segmentation results when
trained on SemanticKITTI and tested on nuScenes-lidarseg,
Waymo, SemanticPOSS, respectively. And Fig. 4, Fig. 5,
Fig. 6 are the segmentation results when trained on Waymo
and tested on SemanticKITTI, nuScenes-lidarseg, Seman-
ticPOSS, respectively.

References
[1] Jens Behley, Martin Garbade, Andres Milioto, Jan Quen-

zel, Sven Behnke, Cyrill Stachniss, and Jurgen Gall. Se-
mantickitti: A dataset for semantic scene understanding of
lidar sequences. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 9297–9307,
2019. 1, 2

[2] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-

modal dataset for autonomous driving. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 11621–11631, 2020. 1, 2

[3] Christopher Choy, JunYoung Gwak, and Silvio Savarese.
4d spatio-temporal convnets: Minkowski convolutional neu-
ral networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3075–
3084, 2019. 1

[4] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learn-
ing, pages 448–456. PMLR, 2015. 1

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1

[6] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy
Hospedales. Learning to generalize: Meta-learning for do-
main generalization. In Proceedings of the AAAI conference
on artificial intelligence, volume 32, 2018. 1, 2

[7] Xingang Pan, Ping Luo, Jianping Shi, and Xiaoou Tang. Two
at once: Enhancing learning and generalization capacities
via ibn-net. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 464–479, 2018. 1

[8] Yancheng Pan, Biao Gao, Jilin Mei, Sibo Geng, Chengkun
Li, and Huijing Zhao. Semanticposs: A point cloud dataset
with large quantity of dynamic instances. In 2020 IEEE
Intelligent Vehicles Symposium (IV), pages 687–693. IEEE,
2020. 1, 2

[9] Cristiano Saltori, Fabio Galasso, Giuseppe Fiameni, Nicu
Sebe, Elisa Ricci, and Fabio Poiesi. Cosmix: Compositional
semantic mix for domain adaptation in 3d lidar segmenta-
tion. In European Conference on Computer Vision, pages
586–602. Springer, 2022. 2

[10] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 2446–2454, 2020. 1, 2

[11] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Im-
proved texture networks: Maximizing quality and diversity
in feed-forward stylization and texture synthesis. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 6924–6932, 2017. 1

[12] Aoran Xiao, Jiaxing Huang, Dayan Guan, Fangneng Zhan,
and Shijian Lu. Transfer learning from synthetic to real lidar
point cloud for semantic segmentation. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 36,
pages 2795–2803, 2022. 1, 2

[13] Li Yi, Boqing Gong, and Thomas Funkhouser. Com-
plete & label: A domain adaptation approach to seman-
tic segmentation of lidar point clouds. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 15363–15373, 2021. 1, 2, 3
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(a) Ground Truth (b) Base (c) Augment (d) IBN-Net (e) MLDG(A)

(f) MLDG(B) (g) CoSMIX(N) (h) CoSMIX(W) (i) Ours

Figure 1. Qualitative comparisons between the proposed method and the baseline methods when trained on SemanticKITTI and tested on
nuScenes-lidarseg. The circles shown in the figure indicate the misclassified parts.
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(a) Ground Truth (b) Base (c) Augment (d) IBN-Net (e) MLDG(A)

(f) MLDG(B) (g) CoSMIX(N) (h) CoSMIX(W) (i) Ours

Figure 2. Qualitative comparisons between the proposed method and the baseline methods when trained on SemanticKITTI and tested on
Waymo. The circles shown in the figure indicate the misclassified parts.
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(a) Ground Truth (b) Base (c) Augment (d) IBN-Net (e) MLDG(A)

(f) MLDG(B) (g) CoSMIX(N) (h) CoSMIX(W) (i) Ours

Figure 3. Qualitative comparisons between the proposed method and the baseline methods when trained on SemanticKITTI and tested on
SemanticPOSS. The circles shown in the figure indicate the misclassified parts.
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(a) Ground Truth (b) Base (c) Augment (d) IBN-Net (e) MLDG(A)

(f) MLDG(B) (g) CoSMIX(N) (h) CoSMIX(K) (i) Ours

Figure 4. Qualitative comparisons between the proposed method and the baseline methods when trained on Waymo and tested on Se-
manticKITTI. The circles shown in the figure indicate the misclassified parts.



car drivable-surfacesidewalk truck pedestrianother-vehicle vegetationwalkable

(a) Ground Truth (b) Base (c) Augment (d) IBN-Net (e) MLDG(A)

(f) MLDG(B) (g) CoSMIX(N) (h) CoSMIX(K) (i) Ours

Figure 5. Qualitative comparisons between the proposed method and the baseline methods when trained on Waymo and tested on
nuScenes-lidarseg. The circles shown in the figure indicate the misclassified parts.
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(a) Ground Truth (b) Base (c) Augment (d) IBN-Net (e) MLDG(A)

(f) MLDG(B) (g) CoSMIX(N) (h) CoSMIX(K) (i) Ours

Figure 6. Qualitative comparisons between the proposed method and the baseline methods when trained on Waymo and tested on Seman-
ticPOSS. The circles shown in the figure indicate the misclassified parts.
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