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Appendix: Additional Experimental Details
Labeling Budget Calculation. Seminar works [2, 3] of-
fered the annotation time of various labeling sources (e.g.,
full mask, bounding box, point, image-level labels) on Pas-
cal VOC dataset [7]. Since the COCO dataset [14] we
used has more categories and instances per image than the
VOC dataset, we estimate the labeling budget for the COCO
dataset following their budget calculation method. The
COCO 2017 trainset has a total of 80 categories and con-
tains 118,287 images and 860,001 instances. Also, it has an
average of 7.2 instances and 2.9 categories per image. By
considering this statistic of COCO dataset, we calculate the
labeling budget as follows:

• Full mask: 77.1classes/img × 1s/class +
7.2inst/img × 79s/mask = 645.9s/img.

• Bounding box: 77.1classes/img × 1s/class +
7.2inst/img × 7s/bbox = 127.5s/img.

• Point: 77.1classes/img × 1s/class +
2.9classes/img × 2.4s/point + (7.2inst/img −
2.9classes/img)× 0.9s/point = 87.9s/img.

• Image-level: 80classes/img × 1s/class = 80s/img.

Input of MaskRefineNet. In this section, we further pro-
vide the details about the input sources for MaskRefineNet.
After training the teacher network using the fully labeled
data, we generate instance mask outputs for the point-
guided filtered proposals (i.e., true-positive proposals) us-
ing the trained teacher network. We treat the mask out-
puts as rough masks to be used as the input source of the
MaskRefineNet. For each rough mask, we loosely crop
each instance region in the input image, rough mask, and
point heatmap. Specifically, after obtaining the bounding
box from the rough mask using the min-max operations,
we re-scale the size of the box to double, and then we use
this box region as the cropping region. In addition, for the
point heatmap, we encode each point to a 2-dimensional
gaussian kernel with a sigma of 6, as done in [19, 22].

Input Size AP AP50 AP75

128×128 34.1 53.4 36.1
256×256 35.5 56.0 37.8
384×384 35.5 55.9 37.7

Table 1. Effect of the input size of MaskRefineNet. The APs are
measured on COCO 2017 validation set.

Iterative 1% 2% 5% 10% 30% 50% 100%

23.9 25.1 33.4 35.5 37.4 38.3 39.0
✓ 25.6 26.0 34.5 35.9 37.6 38.3 39.0

Table 2. Effect of iterative training strategy. The APs are mea-
sured on COCO 2017 validation set according to COCO subsets.

We concatenate the three input sources (i.e., cropped in-
put image RH×W×3, cropped rough mask RH×W×1, and
cropped point heatmap RH×W×C) to be the input tensor
RH×W×(3+1+C) of the MaskRefineNet, where C is the
number of classes.

Appendix: Additional Analysis
Effect of the input size of MaskRefineNet. We orig-
inally set the input size of MaskRefineNet to 256×256.
Here, we change the input size to verify its effect on the
WSSIS result in table 1. For this, we train the MaskRe-
fineNet using the input size of 128×128 or 384×384. We
measure the AP result of the student network trained with
the pseudo and full labels on the COCO 2017 validation set.
Consequently, the 256×256 size yields the best AP score of
35.5% but its performance gap with the 384×384 size is
marginal (35.5% vs 35.4%).

Effect of iterative training strategy. Some weakly-
supervised methods [1,11,17] utilize iterative training strat-
egy; after training the target network, they generate pseudo
labels using the target network, and then they newly train
the target network using the pseudo labels. This strat-
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Method Label Types Budget (days) ↓ AP (%) ↑

Weakly-supervised Models

BBTP [10] B 100% 174.5 21.1
BBAM [12] B 100% 174.5 25.7
BoxInst [16] B 100% 174.5 33.2

BoxLevelSet [13] B 100% 174.5 33.4
BoxTeacher [6] B 100% 174.5 35.4
Point-sup [5] P10 100% 263.2 37.7

Weakly Semi-supervised Models

Ours F 5% + P 95% 158.5 33.7
Ours F 10% + P 90% 196.7 35.8
Ours F 20% + P 80% 273.1 37.1
Ours F 30% + P 70% 349.5 38.0
Ours F 50% + P 50% 502.3 38.8

Fully Supervised Models

MRCNN [8] F 100% 884.2 38.8
CondInst [15] F 100% 884.2 39.1
SOLOv2 [18] F 100% 884.2 39.7

Table 3. Additional comparisons with weakly-supervised
methods in terms of labeling budget and accuracy. We com-
pare the methods on the COCO test-dev under various supervi-
sions; B (box label), P10 (10-points label), P (single-point label),
F (full mask label). All methods use the same backbone network
of ResNet-101 [9].

egy could give additional performance improvement but de-
mands a more complex training pipeline. In this work, we
suffer from the insufficient mask representation of the net-
work when the amount of fully labeled data is extremely
limited (e.g., COCO 1%). Although we can alleviate the
problem with the proposed MaskRefineNet, we addition-
ally try to adopt this strategy since we assume that the
trained student network may have stronger mask represen-
tation ability than the teacher network. For this, after train-
ing the student network, we newly generate pseudo instance
masks for point labeled images. Using both full labels and
new pseudo labels, we train a new student network. As the
results in table 2, the iterative training strategy yields mean-
ingful improvements on tiny fully labeled data conditions
(COCO 1%: 23.9%→25.6%). However, there is no signif-
icant performance improvement for subsets above COCO
30%. This result demonstrates that (1) the iterative train-
ing strategy is helpful only when the amount of fully la-
beled data is extremely limited, (2) in more generous con-
ditions such as COCO 30% and 50%, our MaskRefineNet is
enough to replenish the mask representation of the network.

Additional Comparison with weakly-supervised
method. Point-sup [5] introduced a new type of weak
supervision source, multiple (10) points. They achieved
remarkable instance segmentation results with a highly
reduced annotation cost. To compare with them, we
estimate the annotation time for 10-points according to

Method 5% 10% 20% 30% 40% 50%

Point DETR [4] 26.2 30.3 33.3 34.8 35.4 35.8
Group R-CNN [21] 30.1 32.6 34.4 35.4 35.9 36.1

ours 32.4 34.3 35.6 36.9 37.0 37.6

Table 4. Qualitative comparisons on COCO test-dev object de-
tection benchmark. All methods used the ResNet-50 backbone.

the literature; they labeled 10-points in the bounding box
region.

• 10 Points: 77.1classes/img × 1s/class +
7.2inst/img×(7s/bbox+10points×0.9s/point) =
192.3s/img.

In table 3, we provide the results for weakly-supervised
methods and ours on COCO test-dev in terms of accuracy
and labeling budget. Although Point-sup shows a slightly
better efficiency than ours (37.7% with a budget of 263.2
days vs. 37.1% with a budget of 273.1 days), we argue that
our training setting is more applicable for the current dataset
conditions than them because they require newly annotating
of 10-points. Also, we show the possibility for more perfor-
mance improvement up to 38.8%, which is highly close to
the result of the fully-supervised setting. Furthermore, they
give us a new future direction; incorporating 10-points and
single-point without any mask labels.

Comparison with weakly semi-supervised object de-
tection methods. In our main paper, we discussed the
weakly semi-supervised object detection (WSSOD) meth-
ods [4, 21], which used the box labels as strong labels and
the point labels as weak labels. Since the instance segmen-
tation covers object detection, we measure our performance
on the COCO test-dev object detection benchmark. For this,
we use the min-max points from the instance mask output
as our bounding box output. Even though our strong la-
bel is different from theirs (full mask vs. bounding box),
the results in table 4 show that ours can surpass the state-
of-the-art WSSOD performance. We note that all methods
use the same ResNet-50 [9] backbone network and the same
amount of total strong and weak labels.

Qualitative analysis for the effect of input sources of
MaskRefineNet. In Table 3 of our main paper, we pro-
vided the quantitative analysis of the effect of input sources
of MaskRefineNet. Here, we supplement our analysis with
the qualitative results according to the input sources of the
MaskRefineNet in Figure 1. When given all three informa-
tive input sources, the MaskRefineNet can produce high-
quality refined masks by separating overlapping instances
and removing noisy pixels.



Qualitative comparison of baselines and our WSSIS
method. In Figure 6 of our main paper, we provided the
AP evolution of two baselines and our WSSIS method ac-
cording to the COCO subsets. In Figure 2, we provide the
qualitative results of two baselines and our method under
the COCO 10% setting. There are four types of methods:
(a) training with fully labeled data only, (b) training with
fully labeled data and unlabeled data, (c) training with fully
labeled data and point labeled data, and (d) training with
fully labeled data and point labeled data along with our
point-guided MaskRefineNet. The results demonstrate that
the network trained with our method can be guided with
higher-quality pseudo labels, resulting less false-positive
and false-negative outputs.

Additional qualitative results on COCO dataset. In
Figure 3, we provide additional qualitative results of ours
trained with 5%, 20%, and 50% COCO subsets.

Qualitative results on BDD100K dataset. We qualita-
tively analyze the effect of leveraging point labels for
the instance segmentation model using the BDD100K
dataset [20]. There are two types of networks: the first is
the network trained with only 7K fully labeled data, and the
second is the network trained with 7K fully labeled data and
67K point labeled data. As shown in Figure 4, due to our ef-
fective leveraging of the point labels, the second network is
much more robust to large and small instances and occluded
instances.

References
[1] Aditya Arun, CV Jawahar, and M Pawan Kumar. Weakly su-

pervised instance segmentation by learning annotation con-
sistent instances. In European Conference on Computer Vi-
sion, pages 254–270. Springer, 2020. 1

[2] Amy Bearman, Olga Russakovsky, Vittorio Ferrari, and Li
Fei-Fei. What’s the point: Semantic segmentation with point
supervision. In European conference on computer vision,
pages 549–565. Springer, 2016. 1

[3] Mı́riam Bellver Bueno, Amaia Salvador Aguilera, Jordi Tor-
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Figure 1. Qualitative analysis of the effect of input sources of MaskRefineNet. Object instances can not be distinguished when the
point label is not given for MaskRefineNet (3rd col). Meanwhile, mask representations are inaccurate due to the absence of prior rough
masks (4th col). Based on these low-cost priors, we can obtain sophisticated masks per object instance (5th col).



Figure 2. Qualitative comparison of models trained with different types of supervision on COCO 10% setting. The result of the semi-
supervised setting can detect instance masks for all objects but is vulnerable to misclassification (e.g. cat, person, bear, airplane, toilet).
Meanwhile, our point-guided model presents accurate class predictions. Our MaskRefineNet further elaborates the mask representation.



Figure 3. Additional qualitative results according to the various subsets in COCO data. Owing to our point guidance along with
MaskRefineNet, leveraging only 5% of full labeled data sufficiently localizes all the instances with elaborative mask representations.



Figure 4. Qualitative comparison of leveraging point labels on BDD100K. Training with point labels clearly enriches the mask repre-
sentation and removes the noise incurred by visually hard samples (e.g., dark light condition in the first row).
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