Supplementary materials for the paper
“VNE: An Effective Method for Improving Deep Representation
by Manipulating Eigenvalue Distribution”

A. A Brief Introduction to Quantum Theory

A classic bit can be either O or 1. In quantum theory [67,

], a qubit is a quantum extension of the classic bit, and
it can be in state |0), state |1), or any linear combination
(superposition state) of the two as [p) = a |0) +b |1), where
la® + 0> = 1.

Dirac notation and basic concepts: Dirac notation is
used in quantum theory [24]. For a state |)), ¢ should be
understood as the name or label of the state. Because linear
algebra provides the mathematical foundation of quantum
theory, vector notation is adopted. For instance, in the sim-
ple example of |)) = a|0) + b|1), 1)) can be expressed
as |¢) = [a,b]T where the interpretation should be state
|4h) can be O with probability |a|? and 1 with probability
|b|? (therefore |a|?> + |[b|?> = 1). Here, the ket vector |¢)
is the Dirac notation for a column vector in a Hilbert space
H. To represent a row vector, the bra vector (1| is used, as
in (¢)| = [a,b]. An inner product or braket is represented
as (1|¢) and an outer product or ketbra is represented as
e

A composite quantum state of n qubits can be repre-
sented as a vector of size 2" (e.g., a single-qubit state is rep-
resented as a vector of size two). For example, a quantum
state of two separable single-qubit states can be represented
as

) @16) = [¥) [4) = [¢¢)

8
= [a,b]T ® [e, d]T ®

= [ac, ad, be, bd] "

in which |ac|?, |ad|?, |bc|®, and |bd|” represent the probabil-
ity of [1p¢) being |00) ,|01),|10), and |11), respectively. In
d-dimensional quantum system, a quantum state is on the
unit hypersphere in a Hilbert space H.

A state can be either pure or mixed. In the simple exam-
ple, |0) = [1,0]7 and |1) = [0, 1]T form the computational
basis states, and they are pure states. Any superposition of
the two, |[¢)) = a|0) + b|1), is also a pure state because
it corresponds to a single vector with a probabilistic distri-
bution over the basis states. By contrast, a mixed state is a
probabilistic mixture of a set of pure states. Note that a pure
state already has a probabilistic interpretation over the basis
states and a mixed state has an additional level of probabilis-
tic interpretation over a set of such pure states. In this case,
we are considering a state that is not completely known but
is an ensemble of pure states {|¢;)} with respective proba-
bilities {p;}. The full information of a mixed state cannot
be represented as a vector, and the notion of the density op-
erator (also called density matrix) is required.

Definition 1 (Density operator [67]). A density operator is
defined as below.
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Density operator p satisfies p > 0 and tr(p) = 1. In
addition, p = p? and rank(p) = 1 are satisfied for pure
states and t7(p?) < 1 is satisfied for mixed states. The
density operator provides a convenient way to describe the
uncertainty or probability distribution of a quantum system.
According to Gleason’s theorem [31], the probability of a
state |1);) in the system with p is given by tr(p |1, }1);]).

While quantum theory encompasses a broad scope of
subjects, quantum information theory or quantum Shannon
theory is a sub-field that focuses on the quantum equivalent
of Shannon information theory [88]. Among the extensive
results, we utilize the basic concepts of von Neumann en-
tropy (also called quantum entropy). While Shannon en-
tropy is calculated for a classical probability distribution,
von Neumann entropy is calculated for a density operator
p [67], a positive semi-definite hermitian matrix in a Hilbert
space ‘H with the trace value of one. Similar to Shannon
information theory, it measures the uncertainty associated
with a quantum system.

Definition 2 (von Neumann entropy [67]). The von Neu-
mann entropy (quantum entropy) of a quantum state with
density operator p is defined as

S(p) & —tr(plogp) = Z)\ log A;, (10)

where {\;} are the eigenvalues of p.

B. Proofs of Theorems

Lemma 1. For given p; > 0 and Z _1Pi = 1, the en-

tropy function H(p1, ...,pn) = 21:1 p; log p; is strictly
concave and is upper-bounded by logn as follows,

Proof. Refer to Section D.1 in [61]. O

logn=H(1/n,...,

Lemma 2. The KL Divergence for two zero-mean d-
dimensional multivariate Gaussian distributions can be de-
rived as follows,

DKL(./\/(O, El)HN(O, 22))
1 _ |32| (12)
= |r(E;'8) —d+1log
92 ( 2 ) |21‘
Proof. Refer to Section 9 in [26]. O



Theorem 1 (Rank and VNE). For a given representation
autocorrelation Cpyy = HT H/N € R4 of rank k (< d),

log(rank(cauto)) > S(Cauto)a (13)

where equality holds iff the eigenvalues of Cuyp are uni-
Sformly distributed with V;?:l)\j =1/k and V?:k+1)\j =0.

Proof.

log(rank(Cyyo)) = log(k) (14)
> H(M\, ..., \;) (by Lemma 1)  (15)
k
== Ajlog) (16)
j=1
d
== Ajlog); (17)
j=1
= S(Cauto)- (18)

By Lemma 1, the inequality (15) holds with equality if and
only if ¥¥_, \; = 1/k. The Eq. (17) follows from the con-
vention 0log 0 = 0 [21]. O

Assumption 1. We assume that representation h follows
zero-mean multivariate Gaussian distribution. In addition,
we assume that the components of h (denoted as h")) have
homogeneous variance of é, ie., szlh(i) ~ N(0, é)

Theorem 2 (Disentanglement and VNE). Under the As-
sumption 1, h is disentangled if S(Cgu1o) is maximized.

Proof. By Assumption 1, h ~ N(0,3;) for £; € R¥*4
where diagonal entries in 33; are equal to 1/d.

In addition, we define new random variable h/ ~
N(O, 22) for 22 = é . Id.

Then, because hY ~ N(0, %) and K’ ~ A(0, %) and
the components of h’ are independent,

d d
[1p™) =] p(r') = p(A). (19)
=1 =1

By Lemma 1, S(Cyuo) is maximized if and only if

1

P

where \; are eigenvalues of X (= E[hhT] = Cuyo)-

Starting from Definition of total correlation T'C(h)
in [1], we have

Vi_ A = (20)

d
2-TC(h) =2-DxL(p(h)|| [[p(R")) D)

=2 Dyw (p(R)||p(R)) 22)
=t(X;'%) —d+log Igj: (23)
(1/d)¢

(1/d)?

=d—d+log =0, 24)

where Eq. (22) follows from Eq. (19), Eq. (23) follows from
Lemma 2, and Eq. (24) follows from Eq. (20).

If TC'(h) = 0, the components of h are independent,
therefore h is disentangled [1]. O

Theorem 3 (Isotropy and VNE). For a given representation
matrix H € RN*?, suppose that N < d and S(Cauo) is
maximized. Then,

HH' = Iy. (25)

Proof. We consider singular value decomposition of H (=
USVT)forU € RV*N, ¥ € RV*? and V € R4, If
N < d and S(Cauo) is maximized, by Lemma 1, eigenval-
ues of Coyo(= HTH/N = VETEVT/N) are supposed
to be equal to 1/N for the first N eigenvalues and zero for
the others. Therefore X7 = I'y and we have

HHT =UxxTU? = Iy. (26)
O

C. Main Algorithm

hape=[N, d]J

def get_vne (H):
7 = torch.nn.functional.normalize (H, dim=1)
rho = torch.matmul(zZ.T, Z) / Z.shape[0]
eig_val = torch.linalg.eigh(rho) [0] [-Z.shape[0]:]
return - (eig_val * torch.log(eig_val)) .nansum/()
# the following is equivalent and faster when N < d
def get_vne (H):
7Z = torch.nn.functional.normalize (H, dim=1)
sing_val = torch.svd(Z / np.sqrt(Z.shape[0])) [1]
eig_val = sing_val *x 2
return (eig_val + torch.log(eig_val)) .nansum()

Figure 9. PyTorch implementation of VNE.

D. Computational Overhead

We train I-VNE™ using 2xRTX 3090 GPUs, ImageNet-
1K, and various batch sizes and models. In Table 9, the
average computational overhead is 2.68%.

Model ResNet-18 ResNet-50

Batch Size 256 128 64 256 128 64
Average training time  On VNE ~ 0.051  0.024 0.011 0.120 0.073  0.031
per iteration (sec.) Total 2318 1.288 0.845 2745 2.101 1.127
Overhead 221% 1.89% 1.36% 437% 3.48% 2.75%

Table 9. Computational overhead of VNE.



E. Experimental Details for I-VNE "

The PyTorch implementation codes will be made avail-
able online. Our implementations follow the standard train-
ing protocols of SSL in [35,96] and the standard evaluation
protocols of SSL in [34,35,63,96]. A few important hyper-
parameters are described as follows.

Backbone and Projector: For all datasets, we use
ResNet-50 [38] as the default backbone. For CIFAR-10,
we use 2-layer MLP projector with hidden dimension of
2048 and output dimension of 128. For ImageNet-100, we
use 3-layer MLP projector with hidden dimension of 2048
and output dimension of 256. For ImageNet-1K, we use the
same projector as in the ImageNet-100 case, except that the
output dimension is 512.

Optimization: We use SGD optimizer with momentum
of 0.9. The learning rate (LR) is linearly scaled with batch
size (LR = base learning rate x batch size / 256), and it is
scheduled by the cosine learning rate decay with 10-epoch
warm-up [59]. For CIFAR-10 and ImageNet-100, we use
base learning rate of 0.4, batch size of 64, and weight decay
of le-4. For ImageNet-1K, we use base learning rate of 0.2,
batch size of 512, and weight decay of le-5.

Augmentation: For CIFAR-10 and ImageNet-100, we
adopt multi-view setting in [1 1] and generate 6 views using
the same augmentations in [14] (for CIFAR-10) and in [11]
(for ImageNet-100). For ImageNet-1K, we generate the de-
fault 2 views using the same augmentation as in [35]. Note
that we use 2-view setting for ImageNet-1K because of the
computational limitation.

F. Supplementary Results

Method Top-1  Top-5
Supervised [14] 76.5 93.7

SimCLR [14] 69.3 89.0

MoCo v2 [17] 71.1 90.1

InfoMin Aug. [81]  73.0  91.1

BYOL [35] 74.3 91.6
SwAV [11] 75.3

Shuffled-DBN [43]  65.2
Barlow Twins [96] 73.2 91.0
VICReg [7] 732 91.1

I-VNE™ (ours) 72.1 91.0

Table 10. SSL: Linear evaluation performance in ImageNet-1K
for various representation learning methods. They are all based
on ResNet-50 encoders pre-trained with various datasets. Linear
classifier on top of the frozen pre-trained model is trained with
labels. State-of-the-art methods are included and the best results
are indicated in bold.
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Figure 10. Meta-learning: Dis- Figure 11. Domain generaliza-
entanglement of representation. tion: Isotropy of representation.

Algorithm  Method PACS VLSC OfficeHome Terralncognita
Avg. Diff. Avg. Diff. Avg. Diff. Avg. Dift.
ERM Vanilla ~ 85.2 76.7 64.9 45.4
VNE- 869 17 781 14 659 1.0 50.6 5.2
SE~ 8.0 -02 765 -02 653 04 504 5.0
SWAD Vanilla ~ 88.2 79.4 70.2 50.9
VNE- 883 01 797 03 711 09 517 0.8
SE~ 884 02 796 01 710 08 512 0.2

Table 11. Von Neumann entropy vs. Shannon entropy: The re-
sults of domain generalization with ERM and SWAD algorithms
are shown. For regularizing Shannon entropy, we have used the
InfoNCE estimation of self-information, Ince(h; h).



