
Supplementary materials for the paper
“VNE: An Effective Method for Improving Deep Representation

by Manipulating Eigenvalue Distribution”

A. A Brief Introduction to Quantum Theory
A classic bit can be either 0 or 1. In quantum theory [67,

88], a qubit is a quantum extension of the classic bit, and
it can be in state |0⟩, state |1⟩, or any linear combination
(superposition state) of the two as |ψ⟩ = a |0⟩+b |1⟩, where
|a|2 + |b|2 = 1.

Dirac notation and basic concepts: Dirac notation is
used in quantum theory [24]. For a state |ψ⟩, ψ should be
understood as the name or label of the state. Because linear
algebra provides the mathematical foundation of quantum
theory, vector notation is adopted. For instance, in the sim-
ple example of |ψ⟩ = a |0⟩ + b |1⟩, |ψ⟩ can be expressed
as |ψ⟩ = [a, b]T where the interpretation should be state
|ψ⟩ can be 0 with probability |a|2 and 1 with probability
|b|2 (therefore |a|2 + |b|2 = 1). Here, the ket vector |ψ⟩
is the Dirac notation for a column vector in a Hilbert space
H. To represent a row vector, the bra vector ⟨ψ| is used, as
in ⟨ψ| = [a, b]. An inner product or braket is represented
as ⟨ψ|ϕ⟩ and an outer product or ketbra is represented as
|ψ⟩⟨ϕ|.

A composite quantum state of n qubits can be repre-
sented as a vector of size 2n (e.g., a single-qubit state is rep-
resented as a vector of size two). For example, a quantum
state of two separable single-qubit states can be represented
as

|ψ⟩ ⊗ |ϕ⟩ = |ψ⟩ |ϕ⟩ = |ψϕ⟩
= [a, b]T ⊗ [c, d]T = [ac, ad, bc, bd]T

(8)

in which |ac|2, |ad|2, |bc|2, and |bd|2 represent the probabil-
ity of |ψϕ⟩ being |00⟩ , |01⟩ , |10⟩, and |11⟩, respectively. In
d-dimensional quantum system, a quantum state is on the
unit hypersphere in a Hilbert space H.

A state can be either pure or mixed. In the simple exam-
ple, |0⟩ = [1, 0]T and |1⟩ = [0, 1]T form the computational
basis states, and they are pure states. Any superposition of
the two, |ψ⟩ = a |0⟩ + b |1⟩, is also a pure state because
it corresponds to a single vector with a probabilistic distri-
bution over the basis states. By contrast, a mixed state is a
probabilistic mixture of a set of pure states. Note that a pure
state already has a probabilistic interpretation over the basis
states and a mixed state has an additional level of probabilis-
tic interpretation over a set of such pure states. In this case,
we are considering a state that is not completely known but
is an ensemble of pure states {|ψi⟩} with respective proba-
bilities {pi}. The full information of a mixed state cannot
be represented as a vector, and the notion of the density op-
erator (also called density matrix) is required.

Definition 1 (Density operator [67]). A density operator is
defined as below.

ρ ≜
∑
i

pi |ψi⟩⟨ψi| . (9)

Density operator ρ satisfies ρ ≥ 0 and tr(ρ) = 1. In
addition, ρ = ρ2 and rank(ρ) = 1 are satisfied for pure
states and tr(ρ2) < 1 is satisfied for mixed states. The
density operator provides a convenient way to describe the
uncertainty or probability distribution of a quantum system.
According to Gleason’s theorem [31], the probability of a
state |ψi⟩ in the system with ρ is given by tr(ρ |ψi⟩⟨ψi|).

While quantum theory encompasses a broad scope of
subjects, quantum information theory or quantum Shannon
theory is a sub-field that focuses on the quantum equivalent
of Shannon information theory [88]. Among the extensive
results, we utilize the basic concepts of von Neumann en-
tropy (also called quantum entropy). While Shannon en-
tropy is calculated for a classical probability distribution,
von Neumann entropy is calculated for a density operator
ρ [67], a positive semi-definite hermitian matrix in a Hilbert
space H with the trace value of one. Similar to Shannon
information theory, it measures the uncertainty associated
with a quantum system.

Definition 2 (von Neumann entropy [67]). The von Neu-
mann entropy (quantum entropy) of a quantum state with
density operator ρ is defined as

S(ρ) ≜ −tr(ρ log ρ) = −
∑
j

λj log λj , (10)

where {λj} are the eigenvalues of ρ.

B. Proofs of Theorems
Lemma 1. For given pi ≥ 0 and

∑n
i=1 pi = 1, the en-

tropy function H(p1, ..., pn) = −
∑n

i=1 pi log pi is strictly
concave and is upper-bounded by log n as follows,

log n = H(1/n, ..., 1/n) ≥ H(p1, ..., pn) ≥ 0. (11)

Proof. Refer to Section D.1 in [61].

Lemma 2. The KL Divergence for two zero-mean d-
dimensional multivariate Gaussian distributions can be de-
rived as follows,

DKL(N (0,Σ1)∥N (0,Σ2))

=
1

2

[
tr(Σ−1

2 Σ1)− d+ log
|Σ2|
|Σ1|

]
.

(12)

Proof. Refer to Section 9 in [26].

Theorem 1 (Rank and VNE). For a given representation
autocorrelation Cauto = HTH/N ∈ Rd×d of rank k (≤ d),

log(rank(Cauto)) ≥ S(Cauto), (13)

where equality holds iff the eigenvalues of Cauto are uni-
formly distributed with ∀kj=1λj = 1/k and ∀dj=k+1λj = 0.

Proof.

log(rank(Cauto)) = log(k) (14)
≥ H(λ1, ..., λk) (by Lemma 1) (15)

= −
k∑

j=1

λj log λj (16)

= −
d∑

j=1

λj log λj (17)

= S(Cauto). (18)

By Lemma 1, the inequality (15) holds with equality if and
only if ∀kj=1λj = 1/k. The Eq. (17) follows from the con-
vention 0 log 0 = 0 [21].

Assumption 1. We assume that representation h follows
zero-mean multivariate Gaussian distribution. In addition,
we assume that the components of h (denoted as h(i)) have
homogeneous variance of 1

d , i.e., ∀di=1h
(i) ∼ N (0, 1d).

Theorem 2 (Disentanglement and VNE). Under the As-
sumption 1, h is disentangled if S(Cauto) is maximized.

Proof. By Assumption 1, h ∼ N (0,Σ1) for Σ1 ∈ Rd×d

where diagonal entries in Σ1 are equal to 1/d.
In addition, we define new random variable h′ ∼

N (0,Σ2) for Σ2 = 1
d · Id.

Then, because h(i) ∼ N (0, 1d) and h′(i) ∼ N (0, 1d) and
the components of h′ are independent,

d∏
i=1

p(h(i)) =

d∏
i=1

p(h′(i)) = p(h′). (19)

By Lemma 1, S(Cauto) is maximized if and only if

∀dj=1λj =
1

d
, (20)

where λj are eigenvalues of Σ1(= E[hhT] = Cauto).
Starting from Definition of total correlation TC(h)

in [1], we have

2 · TC(h) = 2 ·DKL(p(h)∥
d∏

i=1

p(h(i))) (21)

= 2 ·DKL(p(h)∥p(h′)) (22)

= tr(Σ−1
2 Σ1)− d+ log

|Σ2|
|Σ1|

(23)

= d− d+ log
(1/d)d

(1/d)d
= 0, (24)

where Eq. (22) follows from Eq. (19), Eq. (23) follows from
Lemma 2, and Eq. (24) follows from Eq. (20).

If TC(h) = 0, the components of h are independent,
therefore h is disentangled [1].

Theorem 3 (Isotropy and VNE). For a given representation
matrix H ∈ RN×d, suppose that N ≤ d and S(Cauto) is
maximized. Then,

HHT = IN . (25)

Proof. We consider singular value decomposition of H(=
UΣV T) for U ∈ RN×N , Σ ∈ RN×d, and V ∈ Rd×d. If
N ≤ d and S(Cauto) is maximized, by Lemma 1, eigenval-
ues of Cauto(= HTH/N = V ΣTΣV T /N) are supposed
to be equal to 1/N for the first N eigenvalues and zero for
the others. Therefore ΣΣT = IN and we have

HHT = UΣΣTUT = IN . (26)

C. Main Algorithm

N : batch size
d : embedding dimension
H : embeddings, Tensor, shape=[N, d]

def get_vne(H):
Z = torch.nn.functional.normalize(H, dim=1)
rho = torch.matmul(Z.T, Z) / Z.shape[0]
eig_val = torch.linalg.eigh(rho)[0][-Z.shape[0]:]
return - (eig_val * torch.log(eig_val)).nansum()

the following is equivalent and faster when N < d
def get_vne(H):

Z = torch.nn.functional.normalize(H, dim=1)
sing_val = torch.svd(Z / np.sqrt(Z.shape[0]))[1]
eig_val = sing_val ** 2
return - (eig_val * torch.log(eig_val)).nansum()

Figure 9. PyTorch implementation of VNE.

D. Computational Overhead

We train I-VNE+ using 2×RTX 3090 GPUs, ImageNet-
1K, and various batch sizes and models. In Table 9, the
average computational overhead is 2.68%.

Model ResNet-18 ResNet-50

Batch Size 256 128 64 256 128 64

Average training time On VNE 0.051 0.024 0.011 0.120 0.073 0.031
per iteration (sec.) Total 2.318 1.288 0.845 2.745 2.101 1.127

Overhead 2.21% 1.89% 1.36% 4.37% 3.48% 2.75%

Table 9. Computational overhead of VNE.

E. Experimental Details for I-VNE+

The PyTorch implementation codes will be made avail-
able online. Our implementations follow the standard train-
ing protocols of SSL in [35,96] and the standard evaluation
protocols of SSL in [34,35,63,96]. A few important hyper-
parameters are described as follows.

Backbone and Projector: For all datasets, we use
ResNet-50 [38] as the default backbone. For CIFAR-10,
we use 2-layer MLP projector with hidden dimension of
2048 and output dimension of 128. For ImageNet-100, we
use 3-layer MLP projector with hidden dimension of 2048
and output dimension of 256. For ImageNet-1K, we use the
same projector as in the ImageNet-100 case, except that the
output dimension is 512.

Optimization: We use SGD optimizer with momentum
of 0.9. The learning rate (LR) is linearly scaled with batch
size (LR = base learning rate × batch size / 256), and it is
scheduled by the cosine learning rate decay with 10-epoch
warm-up [59]. For CIFAR-10 and ImageNet-100, we use
base learning rate of 0.4, batch size of 64, and weight decay
of 1e-4. For ImageNet-1K, we use base learning rate of 0.2,
batch size of 512, and weight decay of 1e-5.

Augmentation: For CIFAR-10 and ImageNet-100, we
adopt multi-view setting in [11] and generate 6 views using
the same augmentations in [14] (for CIFAR-10) and in [11]
(for ImageNet-100). For ImageNet-1K, we generate the de-
fault 2 views using the same augmentation as in [35]. Note
that we use 2-view setting for ImageNet-1K because of the
computational limitation.

F. Supplementary Results

Method Top-1 Top-5

Supervised [14] 76.5 93.7

SimCLR [14] 69.3 89.0
MoCo v2 [17] 71.1 90.1
InfoMin Aug. [81] 73.0 91.1
BYOL [35] 74.3 91.6
SwAV [11] 75.3
Shuffled-DBN [43] 65.2
Barlow Twins [96] 73.2 91.0
VICReg [7] 73.2 91.1

I-VNE+ (ours) 72.1 91.0

Table 10. SSL: Linear evaluation performance in ImageNet-1K
for various representation learning methods. They are all based
on ResNet-50 encoders pre-trained with various datasets. Linear
classifier on top of the frozen pre-trained model is trained with
labels. State-of-the-art methods are included and the best results
are indicated in bold.

Figure 10. Meta-learning: Dis-
entanglement of representation.

Figure 11. Domain generaliza-
tion: Isotropy of representation.

Algorithm Method PACS VLSC OfficeHome TerraIncognita

Avg. Diff. Avg. Diff. Avg. Diff. Avg. Diff.

ERM Vanilla 85.2 76.7 64.9 45.4

VNE− 86.9 1.7 78.1 1.4 65.9 1.0 50.6 5.2
SE− 85.0 -0.2 76.5 -0.2 65.3 0.4 50.4 5.0

SWAD Vanilla 88.2 79.4 70.2 50.9

VNE− 88.3 0.1 79.7 0.3 71.1 0.9 51.7 0.8
SE− 88.4 0.2 79.6 0.1 71.0 0.8 51.2 0.2

Table 11. Von Neumann entropy vs. Shannon entropy: The re-
sults of domain generalization with ERM and SWAD algorithms
are shown. For regularizing Shannon entropy, we have used the
InfoNCE estimation of self-information, INCE(h;h).

