
A. Supplementary Material

A.1. Description of simulated RSV distributions

When evaluating the RSV on a synthetic distribution, we considered the following generative model that consists of a
common component x0 with additive noise:

xa = x0 + na, xb = x0 + nb,

zi = wixa + (1� wi)xb,

wi ⇠ Beta(↵,�), x0 ⇠ N (0, 1), na ⇠ N (0, 1), nb ⇠ N (0, 1).

(6)

Depending on the values of ↵ and �, the Beta distribution that the weights wi are drawn from will take different shapes,
changing how units in the representation z vary with inputs xa and xb. We find that the distribution of RSVs in Fig. 3
reflect the full spectrum of these various distributions, where the resulting RSVs can vary from an approximately Gaussian
distribution where units vary equally with both modalities, to polarized representations where units vary uniquely with one
modality

For this synthetic simulation, we can derive a closed form expression for the RSV. In particular (and dropping the subscript
i for clarity),

z = x0 + wna + (1� w)nb (7)

and note that z will be distributed as a normal distribution. Then,
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since x0, na, and nb are independent. Finally,

Cov(z, xa) = E[(Z � E[Z])(Xa � E[Xa]] (12)
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We can then solve for SVi by plugging Eq 9, 16, 17 into Eq 8 and obtain:
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We assumed that the representation zi for half of the units were sampled from above generative model, while the other
half the representation zi were sampled from the reverse convex combination of inputs, i.e, zi = wixb + (1� wi)xa.

For simulations 2-4, we set � = 20 and varied ↵ in [1, 20, 30] respectively. We considered a representation on N = 20000
units. For the first simulation we only considered the half of units in the generative model above, with ↵ = 1 and � = 10.



A.2. Generalization of RSV to arbitrary number of sensors

We can naturally generalize the RSV to an arbitrary number n of sources. To do so, define:

SVi(Xj , x1, ..., xj�1, xj+1, ..., xn) = V ar(f(X)i|X1 = x1, ..., Xj�1 = xj�1, Xj+1 = xj+1, ..., Xn = xn),

and then collect the individual source variances into a vector SVi of size n. Then normalized sensor variance would be

RSVi = softmax(SVi),

which provides a normalized quantification (between 0 and 1) of how much an individual unit varies with each sensor
modality j.

A.3. Description of deep linear network experiment

We considered the original input-output correlation (before dropping a sensor) to be
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Our perturbation involved dropping a sensor, in this case the third column, leading to
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Using the analytical equations for the learning dynamics given by [26] for the shallow and deep network, we investigated
how learning the task (row 5) was affected (Fig. 2), finding that such a perturbation had a significant on the dynamics of
sensor learning in the deep, but not shallow, network.

A.4. Description of architectures and training

Most of our experiments are based on the ResNet-18 architecture [15]. We modified the architecture to process multi-
sensor input with what we call a SResNet-18. We separately process two initial pathways which we combine in an additive
manner. In particular, the initial pathway followed the architecture of [15] directly up to (and including) conv3 x (See Table
1 of [15]). After combining the pathways, the remaining layers followed the ResNet-18 architecture directly.

To examine the effect of depth, we modified the All-CNN architecture [28], following [1]. In particular we processed each
pathway with the following architecture:

conv 96 - [conv 96 · 2i�1 - conv 96 · 2i s2]n
i=1 - conv 96 · 2n - conv1 96 · 2n - conv1 10

where s refers to the stride. We then merged the final representation from each pathway in an additive manner. We examined
the setting when n = 1, 2, 3. We used a fixed learning rate of 0.001 in these experiments.

A.5. Description of Blurring Experiments (Fig. 4)

We attempted to simulate a cataract-like deficit by blurring the image to one pathway. We reduced the resolution of the
image being passed to one pathway by first resizing the Cifar images to 8⇥ 8, and then resizing to its original size (32⇥ 32
pixels, decreasing the available information.

While training, we applied standard data augmentation on the uncorrupted pathway (random translation of up to 4 pixels,
and random horizontal flipping. We then retained a width w of the leftmost and rightmost pixels from uncorrupted and
corrupted pathway respectively, setting w = 16 unless otherwise stated. At inference time, no data augmentation was applied
and the leftmost w pixels and rightmost w pixels was supplied to each pathway respectively. We used an initial learning
rate of 0.075, decaying smoothly at each epoch with a scale factor of 0.97. We also found that using a fixed learning rate of



0.0005 (Fig. 15) and different initial learning rates (Fig. 16, right) had similar RSV and performance changes as a result of
the initial deficits.

To quantify the information contained in the representation, we randomly masked out each pathway with p = 0.1 during
training, and computed the usable information Iu contained in the representation Z abbout the task Y following [19, 35]
by computing Iu(Z;Y ) = H(Y ) � LCE , with H(Y ) being known and equal to log2 10 since the distribution of targets
is uniform, and LCE being the cross-entropy loss on the test set. We reported the corresponding RSV plots, and network
performance in Appendix Fig. 9, which reveal similar performance trends and polarization of units, when pre-training with
the random masking as in Fig. 4.

A.6. Description of Independent Pathways Experiment (Fig. 6)

We followed the same setup as above, but instead randomly permuted the images fed to the ‘right’ pathway across the
batch, breaking the correlation between the views. We trained using an initial learning rate of 0.05, decaying smoothly with
a scale factor of 0.97. When training with the deficit we randomly sampled the target from the different views with p = 0.5.
We also modified the architecture to produce multiple classification outputs, corresponding to a classification based on both
views, or each pathway respectively. This modification was helpful for interpreting the polarization plots. While training,
the loss function was applied on the head that contained the proper input-target correspondence. After the deficit, and during
inference, only the head corresponding to both views was used.

A.7. Description of Masking + Supervised MultiViT training

These experiments were based on the MultiMAE architechture [4], using their implementation and closely following their
default settings. We adapted their implementation to process two separate RGB views coming from Kinetics-400 dataset [7].
We used a patch size of 16 in all experiments, and the AdamW optimizer [24]. All inputs were first resized to 224 ⇥ 224
pixels. Our learning rate followed the linear scaling rule [13].

For the masking sensitivity experiments in Fig. 8, we used a fixed delay of 1.33 seconds (4 frames) between frames, and
trained with an initial base learning rate of 0.0001, with 40 epochs of warmup for the learning rate. We trained for 800
epochs, with a 200 epoch deficit of independent frames during the pre-training starting at different epochs during training.
We used a masking ratio of 0.75. We pre-trained with a batch size of 256 per GPU on 8 GPUs. After the pre-training, we
fine-tuned for 20 epochs with all the tokens and the corresponding action classification label. We fine-tuned on 8 GPUs with
a batch size of 32. We fine-tuned with a learning rate of 0.0005, with 5 epochs of warmup.

For the supervised experiments, we trained our networks with an initial base learning rate of 0.01 for 120 epochs using
all the tokens, with 20 epochs of warmup. We applied a temporary deficit of independent frames for 20 epochs, starting at
various epochs during the training. We used in cutmix (1.0) and mixup (0.8) applied to each view) while training and we
used a random baseline between frames. For the supervised experiments, we used a batch size of 64 per GPU.

In both the masking and supervised experiments in Fig. 8, we reported the difference of networks trained with a deficit
starting at different epochs of training against a corresponding model trained without any deficit. In Fig. 7, we show example
reconstructions from our Multi-View transformer pre-trained without a deficit for 800 epochs with a random baseline between
frames.

B. Additional Plots



Figure 9. Same blurring experiment as Fig. 5 with corresponding Relative Source Sensitivity, Fig. 4, but with the addition of random
masking on each view with p = 0.1, allowing the decoding of the usable information [19] (bottom row). Note that the polarization (second
row) is similar to Fig. 4, which is also reflected by the inability to decode the inhibited pathway, after exposure to a sufficiently long deficit
(orange trace in bottom row).

Figure 10. Same blurring experiment as Fig. 5 with corresponding Relative Source Sensitivity, Fig. 4 for crop width of 16 (used in the
main text) for easier comparison against different crop widths in Fig. 11 and Fig. 12.



Figure 11. Same blurring experiment as Fig. 5 with corresponding Relative Source Sensitivity, Fig. 4 for crop width of 14.

Figure 12. Same blurring experiment as Fig. 5 with corresponding Relative Source Sensitivity, Fig. 4 for crop width of 18.



Figure 13. Strabismus-Like Deficit for ablation of no weight decay (wd = 0), no data augmentation and initial lr = 0.05. We also observe
a polarized representation. Note the performance is reduced in comparison to Fig. 6, due to the lack of data augmentation and weight
decay.
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Figure 14. Relative Source Variance for Multi-View Transformer. (Left) We show the distribution of RSV evaluated on the units at
output of the encoder before fine-tuning, revealing a bimodal distribution. Here, training was performed without any deficits. (Right)

During fine-tuning, the representations appear to adapt to become slightly more balanced, depending more evenly on each view, while
retaining the initial bimodal structure learned during pre-training.



Figure 15. Fixed learning rate of 0.0005 during training have similarly shaped critical periods to those in paper, and similar RSV distribu-
tions as a result of the deficit.

Figure 16. Results of multiple runs (light blue), their average (dark blue), and std (bars) for (Left) blurring and (Center) dissociation
deficit. (Right) Different initial learning rates (for blur deficit) have have similarly shaped critical periods to those in paper.
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