
Supplementary Material

A. Implementation Details
This section gives additional details on our implementa-

tion to facilitate reproducibility. First, we describe our base-
line configuration, which is dubbed as BEVDepth†. After-
wards, we provide further information on our X3KD imple-
mentation and the ablation experiments.

A.1. Baseline Details

Data Processing: Our data processing pipeline for
images is mainly adopted from the published Code of
BEVDet4D [7]1. We implemented the pipeline in our code
and verified that the resulting preprocessed inputs exactly
match up with the ones from our reimplementation. The
pipeline starts with processing the 6 images from different
cameras of resolution 900× 1600. To obtain images of the
desired resolution during the evaluation, the images are re-
sized by a factor of 0.48, i.e., to a resolution of 432 × 768.
We then crop it to the target resolution of 256× 704 with a
center crop in the width dimension and by cropping the top
part in the height dimension (assuming objects of interest
are not above a certain height). During training we apply
random resizing with scale factors in the range [0.38, 0.55],
random rotations [−5.4◦, 5.4◦], and random horizontal flip-
ping. The augmentation parameters are chosen randomly
per sample but are applied equally to all 6 images from the
cameras. If we use a higher final resolution, we adapt all
rescaling and cropping transformations outlined above by
the ratio between the higher resolution and 256 × 704 in
a straightforward fashion. After all image transformations,
we normalize all pixel values with the mean and standard
deviations from ImageNet [14].

We store the parameters of all transformations to re-
versely apply them to image pixels before projecting them
into a point cloud representation in LSS [13]. During train-
ing, we also apply data augmentations in BEV before apply-
ing voxel pooling to the point cloud representation in LSS.
We apply random rotations [−22.5◦, 22.5◦], random rescal-
ing [0.95, 1.05] and random horizontal and vertical flipping.
Ground truth bounding boxes are transformed accordingly.
During evaluation, no transformations are applied in BEV.

Network Configuration: The (augmented) input im-
ages are passed through our camera-based 3D object detec-

1https://github.com/HuangJunJie2017/BEVDet

tion (3DOD) network architecture, which is mainly adopted
from BEVDepth [10]. The images are first passed through a
backbone, which is either ResNet-based [6] or ConvNeXt-
based [11] using the implementations from mmdetection2

and mmclassification3, respectively. From the four result-
ing feature maps, the last two are passed through the fea-
ture pyramid network architecture from [7] with 512 output
channels, which are input to the LSS transformation [13].

In LSS, the architectural choices for the feature
and depth prediction networks are adopted from
BEVDepth [10]. We use a depth spacing of 1m and
a voxel grid with the range [−51.2m, 51.2m] with a
spacing of 0.8m, resulting in a 128 × 128 feature grid
with 64 output channels for the lowest image resolution
256 × 704. For all higher image resolutions, we use a
depth spacing of 0.5m and a voxel grid with the range
[−51.2m, 51.2m] with a spacing of 0.4m, resulting in
a 256 × 256 feature grid with 64 output channels. As in
previous works [7, 10], we use the same feature extraction
and LSS transformation for a second adjacent time frame.
Feature maps from both frames are concatenated directly
after LSS. We compensate for the movement between both
frames in the point cloud representation as in [10]4. Also,
we randomly sample adjacent frames between the 2nd and
9th sweep before the current one during training while the
5th sweep before the current one is used during evaluation,
which corresponds to roughly 0.5 s time difference.

The BEV feature grid is passed through a small ResNet-
like backbone and another feature pyramid network whose
architectures are adopted from [7]. The resulting feature
map has 256 output channels. Finally, we pass the fea-
tures through a CenterPoint head [16] with parameters cho-
sen as in BEVDet4D [7] to predict dense class probabilities
and bounding box regression parameters for the 10 classes
of nuScenes: car, truck, construction vehicle, bus, trailer,
barrier, motorcycle, bicycle, pedestrian, and traffic cone.
The Gaussian Focal loss for optimizing the dense class-wise
probability scores is applied over a sigmoid output weighed
with a factor of 1, while the smooth L1 loss for the regres-
sion outputs is weighted with factor of 0.25.

Training Details: For training, we use the AdamW op-
2https://github.com/open-mmlab/mmdetection
3https://github.com/open-mmlab/mmclassification
4https://github.com/Megvii-BaseDetection/BEVDepth



timizer [12] with standard parameters and a weight decay
of 0.01. We train all models for 24 epochs with an initial
learning rate of 2 ·10−4 and 500 warm-up iterations. We re-
duce the learning rate to 2 · 10−5 after 16 epochs and again
to 2 · 10−6 after 22 epochs. We select the last checkpoint
after 24 epochs for evaluation and do not use early stopping.

A.2. X3KD Details

LiDAR Teacher Configuration: Our LiDAR-based
3DOD teacher model is strongly based on the implemen-
tation of TransFusion [1]5 which we reimplement in our
framework. It first voxelizes the point cloud and uses
the sparse encoder from SECOND [15] to generate 3D
sparse features. After flattening the height dimension into
the channel dimension, we apply the same BEV encoder-
decoder network and CenterPoint head and loss functions
used in the camera-based 3DOD model. We train the model
for 20 epochs using the AdamW optimizer, an initial learn-
ing rate of 10−4 and the standard cyclic learning rate sched-
ule over 20 epochs from mmdetection3d6. We additionally
apply gradient clipping at a value of 0.1. During train-
ing, we apply random rescaling [0.9, 1.1], random rotations
[−45◦, 45◦], random horizontal and vertical flipping, point
shuffling, and object sampling augmentations. The last 5
epochs are trained without object sampling.

Cross-modal Output-stage Distillation (X-OD): Dur-
ing knowledge distillation, we use LiDAR point clouds cor-
responding to the multi-camera image input to the camera-
based 3DOD model. The point cloud is processed with the
same BEV augmentations as the point cloud representation
inside LSS. Subsequently, it is passed through the LiDAR-
based 3DOD model to generate outputs corresponding to
the camera-based 3DOD model outputs. Recent work has
shown that this technique is usually more effective than pre-
computing pseudo labels [2]. If the output resolutions of
the LiDAR-based and camera-based 3DOD models do not
match, we resize the LiDAR-based 3DOD model’s outputs
using nearest neighbor interpolation to match the camera
model outputs.

Cross-modal Feature-stage Distillation (X-FD): We
use the features directly after the LSS transform of the
camera-based 3DOD model. We pass these features through
a convolutional layer, batch normalization, and ReLU acti-
vation with kernel size 3× 3 and 32 output channels. After-
ward, we apply another convolution with kernel size 1× 1,
one output channel, and a subsequent ReLU activation such
that the output can only contain positive values. This output
is the predicted mean feature activation ĥ in the X-FD loss
function. We compare this prediction against the LiDAR
model’s flattened sparse features in BEV f̃BEV, whose abso-
lute values are averaged over the channel dimension yield-

5https://github.com/XuyangBai/TransFusion
6https://github.com/open-mmlab/mmdetection3d

ing h̃. If the spatial extent of h̃ and ĥ do not match, we
interpolate h̃ in nearest neighbour fashion to match the spa-
tial resolution of ĥ.

Cross-modal Feature-stage Adversarial Training (X-
AT): After concatenating the refined features f̃REF and
f̂REF from LiDAR-based 3DOD model and camera-based
3DOD model, respectively, we pass them through a gra-
dient reversal layer which only affects the backward pass
and a discriminator whose architecture is strongly adopted
from [9]. We use three blocks of convolutional layers with
kernel size 4× 4, stride 2, and 256 output channels, as well
as subsequent instance normalization and Leaky ReLU ac-
tivation with slope 0.2 for negative values. Afterwards, we
apply a convolutional layer with kernel size 4×4 and 1 out-
put channel with subsequent Sigmoid activation function,
yielding the modality classification output ŝ. Note that ŝ is a
map where every entry can be interpreted as the probability
that an input patch of features is generated from the LiDAR-
based (and not from the camera-based) 3DOD model. The
binary labels s are created straightforwardly because we al-
ways know which model generated the input to the discrim-
inator. When backpropagating the gradients from the bi-
nary cross entropy loss between ŝ and s, they are reversed
in the gradient reversal layer directly before they reach the
camera-based 3DOD model.

Cross-task Instance Segmentation Distillation (X-IS):
For pretraining the instance segmentation models, we use
the training split of the nuImages dataset, which contains
about 60, 000 images containing instance segmentation la-
bels for the 10 classes also used for the 3DOD task. We
train the instance segmentation model for 12 epochs using
plain stochastic gradient descent with an initial learning rate
of 2·10−2, a momentum of 0.9, and a weight decay of 10−4.
The learning rate is reduced to 2·10−3 and 2·10−4 at epochs
8 and 11, respectively. During 3DOD model training, we
use the augmented input images and pass them through the
instance segmentation teacher model following the strategy
from [2]. Using the same prediction head architecture in
both the instance segmentation teacher and the additional
PV head of the 3DOD model ensures that the output shapes
are equal and can be easily compared inside loss functions.

A.3. Ablation Details

Waymo Dataset Experiments: We mainly adopt the
nuScenes configuration for Waymo and only apply the
changes made necessary by the sensor setup and task defi-
nition of Waymo. First, images from different cameras have
differing shapes, so we first pad all images with zeros to the
shape 1280×1920. During the evaluation, we resize images
by 0.4 and crop to the final resolution of 384 × 736. Dur-
ing training, we randomly resize by factors [0.33, 0.45] and
keep all other image augmentations as on nuScenes. In the



Model Pre. X-OD X-FD X-AT X-IS mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ mAP↑ NDS↑

BEVDepth† ✓ ✗ ✗ ✗ ✗ 0.644 0.274 0.455 0.350 0.211 37.7 49.5
X-OD ✓ ✓ ✗ ✗ ✗ 0.634 0.276 0.451 0.343 0.204 38.1 50.0
X-FD ✓ ✗ ✓ ✗ ✗ 0.626 0.270 0.475 0.333 0.209 38.2 50.0
X-AT ✓ ✗ ✗ ✓ ✗ 0.654 0.273 0.439 0.337 0.207 37.9 49.8
X-IS ✓ ✗ ✗ ✗ ✓ 0.635 0.273 0.462 0.350 0.204 38.7 50.1
X3KDall ✓ ✓ ✓ ✓ ✓ 0.615 0.269 0.471 0.345 0.203 39.0 50.5

LiDAR Teacher NA NA NA NA NA 0.301 0.257 0.298 0.256 0.195 59.0 66.4

Table 1. Ablation study of X3KD on the nuScenes validation set: We incrementally add our proposed cross-modal feature distillation
(X-FD), adversarial training (X-AT) and output distillation (X-OD) as well as our cross-task instance segmentation distillation (X-IS). All
X3KD variants in the top part are solely based on multi-camera images during inference. Backbone weights are initialized with weights
pretrained for instance segmentation on nuImages (Pre.). Best numbers in boldface, second best underlined.

Model Pre. λX-AT mAP↑ NDS↑

BEVDepth† ✓ 0 37.7 49.5
✓ 1 37.6 49.4

X-AT ✓ 10 37.9 49.8
✓ 20 37.8 49.7

Table 2. Ablation on the X-AT loss weight. We initialize all
models with backbones pre-trained on nuImages (Pre.).

Model Pre. λX-FD mAP↑ NDS↑

BEVDepth† ✓ 0 37.7 49.5
✓ 2 37.8 49.6

X-FD ✓ 10 38.2 50.0
✓ 25 38.1 49.7
✓ 100 37.3 48.8

Table 3. Ablation on the X-FD loss weight. We initialize all
models with backbones pre-trained on nuImages (Pre.).

Model Pre. α3D-bbox mAP↑ NDS↑

BEVDepth† ✓ NA 37.7 49.5
✓ 0.8 37.9 49.8

X-OD ✓ 0.6 38.1 50.0
✓ 0.3 38.0 49.9

Table 4. Ablation on the X-OD ground truth selection thresh-
old. We initialize all models with backbones pre-trained on nuIm-
ages (Pre.).

LSS view transformation, we use a depth spacing of 1m and
a voxel grid with the range [−76.8m, 76.8m] with a spac-
ing of 1.2m, resulting in a 128×128 feature grid. All other
parameters and augmentations are as on nuScenes. Further,
the 5 cameras of the Waymo dataset only provide a 252◦

field of view. Therefore, we make sure to filter bounding
boxes that are not visible in any of the cameras during train-
ing and evaluation (indicated by the metadata of a bounding
box). Also, we adapt the CenterPoint head to output pre-
dictions for only 3 classes of bounding boxes, i.e., vehicles,
pedestrians, and cyclists.

RADAR-based 3DOD Experiments: The data loading
and preprocessing of the RADAR point cloud input data
is adopted from FUTR3D [3]7 and in principle works as

7https://github.com/Tsinghua-MARS-Lab/futr3d

Model Pre. α2D-bbox mAP↑ NDS↑

BEVDepth† ✓ 1.0 37.7 49.5
✓ 0.8 37.9 49.8
✓ 0.5 38.0 50.0

X-IS ✓ 0.2 38.7 50.1
✓ 0.1 38.2 49.9

Table 5. Ablation on the X-IS ground truth selection threshold.
We initialize all models with backbones pre-trained on nuImages
(Pre.).

the preprocessing for the LiDAR point cloud. While the
RADAR point cloud is much sparser than the one from
the LiDAR sensor, it contains additional information per
point, such as velocity. Our RADAR-based 3DOD model’s
feature extraction is adopted from the LiDAR model’s fea-
ture extraction. We concatenate features from both modali-
ties after the view transformation/projection to BEV for the
camera-RADAR fusion-based model. The subsequent pro-
cessing in BEV remains unchanged.

B. Additional Experiments

In this section, we provide further analysis regarding our
chosen hyperparameters and the effectiveness of X3KD on
varying backbones.

B.1. Hyperparameter Analysis

Effect of Pre-Training: We provide additional ablation
studies with a backbone pre-trained on the nuImages dataset
in Table 1. We observe that adding all of our contributions
individually consistently improves the baseline BEVDepth†

and our complete X3KD method achieves the best results.
This is consistent with the main paper’s observations for
backbones pre-trained on ImageNet. We further observe
that, if we pre-train the backbone for instance segmentation,
the achieved improvement is 1.0 and 1.3 points in mAP and
NDS, respectively. This improvement is more minor com-
pared to using backbones pre-trained only on ImageNet.
Nevertheless, X3KD can provide meaningful additional su-
pervision signals to guide the multi-camera 3DOD model
towards a better convergence.



Model Backbone Resolution mAP↑ NDS↑

BEVDepth† ResNet-50 256× 704 35.9 47.2
X3KD (Ours) ResNet-50 256× 704 39.0 50.5

BEVDepth† ConvNeXt-T 256× 704 38.3 50.8
X3KD (Ours) ConvNeXt-T 256× 704 39.7 51.9

BEVDepth† ResNet-101 640× 1600 42.8 53.6
X3KD (Ours) ResNet-101 640× 1600 46.1 56.7

Table 6. Ablation on varying backbones: We show that X3KD
improves ResNet-based as well as ConvNeXt-based models on top
of BEVDepth† (re-implementation of [10]).

X3KD Hyperparameters: We further want to provide
insights into our hyperparameter choices for X3KD in Ta-
bles 2 to 5. First, we analyze the influence of the loss
weights λX-AT in Table 2. We observe that small loss
weights tend to have no apparent effect on the performance,
which is very similar to the baseline result. Increasing the
loss weight to our chosen hyperparameter λX-AT = 10 im-
proves performance over the baseline. Further increasing
the weight yielded no further improvements. Similar obser-
vations could be made for the feature-stage distillation loss
weight λX-FD in Table 3, where the optimal weight is again
λX-FD = 10. The cross-task instance segmentation distilla-
tion and cross-modal output distillation both involve losses,
which are transferred from training with ground truth to
training with pseudo labels. However, the losses have been
investigated in [5, 16]. We therefore keep loss weights
λX-OD = 1 and λX-IS = 1 whiteout further optimization.
We do, however, optimize the ground truth selection thresh-
olds α3D-bbox and α2D-bbox in Tables 4 and 5, respectively.
Predictions above these thresholds are considered bounding
boxes inside the respective losses. For α3D-bbox in Table 4,
we observe that we improve over the baseline regardless
of the chosen threshold, while best results are achieved for
α2D-bbox = 0.6. Similar results are obtained for α2D-bbox in
Table 5, where the optimal value α3D-bbox = 0.2 is obtained.

B.2. Varying Backbones

We provide an overview of the effectiveness of X3KD
for different backbones in Table 6. We observe significant
improvements for ResNet-based models, the backbone we
used to determine our method hyperparameters. When ap-
plying X3KD to a model using the ConvNeXt-T backbone
with unchanged hyperparameters, we also observe improve-
ments in terms of mAP and NDS, though the more minor
improvement compared to ResNet-based backbones might
indicate that there is room for improvement through hyper-
parameter tuning.

B.3. Application on other Baselines

An important additional question is whether our method
can be transferred to other baseline approaches. In this
regard, our cross-task distillation (X-IS) enhances the im-

model BEVDet BEVDet + X3KD BEVDet4D BEVDet4D + X3KD
NDS↑ 37.9 41.3 45.7 49.1

Table 7. Combination of X3KD with BEVDet and BEVDet4D.

model BEVDepth X-AT X-FD X-OD X-IS X3KD
training time 54h 65h 65h 67h 73h 78h
GPU memory 39GB 44GB 44GB 44GB 48GB 52GB

NDS↑ 47.2 48.1 48.5 48.7 50.1 50.5

Table 8. Training complexity/performance trade-off when training
on 4 NVIDIA A100 GPUs with a batch size of 16 per GPU.

age feature extraction, on which many camera-based 3DOD
methods rely. Our output-level distillation (X-OD) re-
places the ground truth in the 3DOD losses with the Li-
DAR model’s output, which is also transferable. Regard-
ing feature-level distillation by X-FD and X-AT, the Li-
DAR model’s guiding 3D features are projected to BEV
space, which can be adapted to other 2D representations.To
demonstrate the transferability of X3KD to other base-
line approaches, we combine X3KD with BEVDet [8] and
BEVDet4D [7] in Table 7, showing significant improve-
ments by using X3KD.

B.4. Training Complexity Analysis

In the following, we analyze the additional training com-
plexity induced through X3KD. We can observe from Ta-
ble 7 that although two additional teacher networks are in-
troduced the overall training time increases only by about
50% as we do not need to calculate gradients for those
additional networks. The complexity of pretraining seg-
mentation and LiDAR teacher models can be omitted as
one could use off-the-shelf models, e.g., from mmdetec-
tion3D [4]. We also observe that adding only single con-
tributions from ours provides interesting trade-offs between
performance and additional training complexity. However,
also note that X3KD induces no extra compute load in in-
ference time, which is vital for sustainable large-scale de-
ployment, e.g., for vehicle fleets.

C. Qualitative Analysis
We provide additional qualitative examples for X3KD in

comparison to the baseline BEVDepth† and the ground truth
(GT) in Fig. 1. In the first example from the top, we observe
that the orientation of trucks and trailers (red and green
boxes) is not well predicted by the baseline BEVDepth† and
some objects are not detected at all. While the predictions
of X3KD are also not perfect, most objects are detected and
the orientation of objects is better aligned, which is also
apparent by comparing the X3KD output to the GT. We at-
tribute the better detection to the additional guidance from
instance segmentation in PV, while a better orientation and
prediction in bird’s eye view (BEV) is likely due to guid-
ance from the LiDAR-based 3DOD model. More examples
of objects that are difficult to detect are given in the second
and third example. In the second example, the bicycle (pink
box) is quite far away and appears rather small in the front



Figure 1. Qualitative results on nuScenes: We show the multi-camera input (top) and bounding box visualizations (bottom). We compare
ResNet-101-based X3KDall to BEVDepth† and the ground truth (GT) for a resolution of 640× 1600. Best viewed on screen and in color.



camera image. Similarly, in the third example the truck
(green box) and the car (blue box) appear small and the car
is partially occluded. Guidance from instance segmentation
in perspective view can help to detect these rather difficult
examples. This improved detection behavior also gener-
alizes to adverse weather conditions as can be seen in the
fourth example. Again, a bicycle is detected by X3KD but
not by the baseline BEVDepth†. Finally, the fifth example
provides additional evidence on how the guidance from the
LiDAR-based 3DOD teacher improves the translation and
orientation characteristics of the predicted bounding boxes.
The barriers (light green boxes) in BEVDepth† are oriented
rather random, while there is a structurally meaningful ori-
entation observable for X3KD.

References
[1] Xuyang Bai, Zeyu Hu, Xinge Zhu, Qingqiu Huang, Yilun

Chen, Hongbo Fu, and Chiew-Lan Tai. TransFusion: Ro-
bust LiDAR-Camera Fusion for 3D Object Detection With
Transformers. In Proc. of CVPR, pages 1090–1099, 2022. 2

[2] Lucas Beyer, Xiaohua Zhai, Amélie Royer, Larisa Markeeva,
Rohan Anil, and Alexander Kolesnikov. Knowledge distil-
lation: A good teacher is patient and consistent. In Proc. of
CVPR, pages 10925–10934, 2022. 2

[3] Xuanyao Chen, Tianyuan Zhang, Yue Wang, Yilun Wang,
and Hang Zhao. FUTR3D: A Unified Sensor Fusion Frame-
work for 3D Detection. arXiv preprint arXiv:2203.10642,
2022. 3

[4] MMDetection3D Contributors. MMDetection3D: Open-
MMLab next-generation platform for general 3D object
detection. https://github.com/open-mmlab/
mmdetection3d, 2020. 4

[5] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. In Proc. of CVPR, pages 2961–2969,
2017. 4

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. In Proc. of
CVPR, pages 770–778, 2016. 1

[7] Junjie Huang and Guan Huang. BEVDet4D: Exploit Tem-
poral Cues in Multi-camera 3D Object Detection. arXiv
preprint arXiv:2203.17054, 2022. 1, 4

[8] Junjie Huang, Guan Huang, Zheng Zhu, and Dalong Du.
BEVDet: High-performance Multi-camera 3D Object De-
tection in Bird-Eye-View. arXiv preprint arXiv:2112.11790,
2021. 4

[9] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A.
Efros. Image-To-Image Translation With Conditional Ad-
versarial Networks. In Proc. of CVPR, pages 1125–1134,
2017. 2

[10] Yinhao Li, Zheng Ge, Guanyi Yu, Jinrong Yang, Zengran
Wang, Yukang Shi, Jianjian Sun, and Zeming Li. BEVDepth:
Acquisition of Reliable Depth for Multi-view 3D Object De-
tection. In Proc. of AAAI, pages 1–9, 2023. 1, 4

[11] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A ConvNet for the
2020s. In Proc. of CVPR, pages 11976–11986, 2022. 1

[12] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay
Regularization. In Proc. of ICLR, pages 1–18, 2018. 2

[13] Jonah Philion and Sanja Fidler. Lift, Splat, Shoot: Encoding
Images From Arbitrary Camera Rigs by Implicitly Unpro-
jecting to 3D. In Proc. of ECCV, pages 194–210, 2020. 1

[14] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. ImageNet Large
Scale Visual Recognition Challenge. International Journal
of Computer Vision, 115(3):211–252, 2015. 1

[15] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely Embed-
ded Convolutional Detection. Sensors, 18(10):3337, 2018.
2

[16] Tianwei Yin, Xingyi Zhou, and Philipp Krähenbühl. Center-
based 3D Object Detection and Tracking. In Proc. of CVPR,
pages 11784–11793, 2021. 1, 4


