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A. Implementation Details
A.1. Backbone Foundation Models

UniVL [1]. Our implementation is based on the offi-
cial code of UniVL [2] pretrained on the HowTo100M
dataset [3]. As in the main paper, we use eight auxiliary loss
functions: LJoint, LM-Joint, LAlign, LM-Align, LCMLM, LCMFM,
LDecoder, and LM-Decoder. For the primary losses for text-
to-video retrieval and video captioning tasks are LAlign and
LDecoder, respectively. LAlign is also used as the primary loss
function for multi-modal sentiment analysis.
Violet [4]. We implement MELTR based on the official Vi-
olet github [5] pretrained on the YT-Temporal 180M [6],
WebVid [7], and CC3M [8]. For text-to-video retrieval,
we adopt three auxiliary losses: video-text matching loss,
masked text modeling loss, and masked visual-token mod-
eling. We use the former one as the primary task loss. We
use additional classification loss for video question answer-
ing.
All-in-one [9]. Our implementation for All-in-one is based
on [10] and it is pretrained on WebVid [7], YT-Temporal
180M [6], HowTo100M [3], CC3M [8], CC12M [11],
COCO [12], VisualGenome [13], and SBU [14]. When
conducting text-to-video retrieval task, video-text matching
loss and masked language modeling loss are adopted and
the former one is used as the primary loss.

A.2. Evaluation metrics

For the video retrieval task, we report the standard re-
trieval metrics, Recall at K (R@K) metric (K=1,5,10) and
Median Rank (MedR). Accuracy metric is reported for
video question answering task which includes both multi-
choice and open-ended questions. As for video caption-
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ing, BLEU [15], METEOR [16], ROUGE-L [17], and
CIDEr [18] are reported.

A.3. MELTR Details.

We use the Adam [19] optimizer with an initial learn-
ing rate α = 3e-5 and β = 1e-4 with a linear learning rate
decay strategy. For MELTR, we use one transformer en-
coder layer with 8 attention heads and 512 hidden dimen-
sions. We trained 40, 20, and 20 epochs on the text-to-video
retrieval, video question answering, and video captioning
tasks with 8 × Tesla A100 GPUs, respectively. We search γ
in {0.1, 0.3, 0.5} for the regularization term and use K = 3
in Eq. (13) of the main paper.

B. Dataset Details
YouCook2. YouCook2 [20] consists of 2k videos, which
cover 89 types of recipes. Each video contains multiple
video clips accompanied by text descriptions. The train
dataset contains 1,261 samples, and the test set contains 439
samples, respectively.
MSRVTT. The original MSRVTT-full [21] dataset, used
on video captioning task, contains 6,513 train, 497 valida-
tion, and 2,990 test samples. However, we have observed
a wide range of dataset split variations throughout research
on text-to-video retrieval. One split variant randomly sam-
ples 1,000 clip-text pairs from the test set for evaluation and
uses the rest of the 9,000 samples as train data [22], which
is commonly denoted as the 1kA split. On the other hand,
the 1kB split uses the identical 1,000 test split of 1kA for
the test, whereas the train set is a subset of 1kA’s contain-
ing 6,656 samples [23]. Another commonly used data split
also uses the identical 1,000 test set, while adopting both
the train and validation set from the standard MSRVTT for
training. We evaluated our method on two split protocols
most prominently observed in the literature, 1kA, and 7k.
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Figure 1. Gradient by embedding type. The gradient of MELTR output with respect to each task loss is plotted for different input
embedding types. (a) Gradient values are generally similar across tasks, and only those with distinct loss scales are distinguished. (b)
Gradients are different across tasks, but stay constant along loss scale, as loss scale information is not provided. (c) MELTR learned to
effectively consider both loss scale and task information.

For convenience, we denote the former as MSRVTT-9k and
the latter as MSRVTT-7k.
TGIF-QA. TGIF-QA [24] contains 165k QA pairs of ani-
mated GIFs. The dataset provides three different subtasks:
TGIF-Action, TGIF-Transition and TGIF-Frame. TGIF-
Action is to identify repeated actions, TGIF-Transition is
to identify the transition between states, and TGIF-Frame
is to answer questions given a GIF frame. TGIF-Action
and TGIF-Transition are conducted under the multi-choice
question answering setting, predicting the best answer given
five options. TGIF-Frame is experimented as the open-
ended question answering with 1,540 most frequent answer
candidates.
MSVD-QA. MSVD-QA [25] contains 47k open-ended
questions on 2k videos, derived from the original MSVD
dataset [26]. We construct the answer set with 1,000 most
frequently appeared answers.
CMU-MOSI. For the multi-modal sentiment analysis task,
we adopt the CMU-MOSI dataset [27] which consists of
2,199 opinion video clips annotated with sentiment inten-
sity values from -3 to 3.

C. Effectiveness of the Regularization Term

We proposed the regularization term Lreg in Section 4.1
of the main paper. Eq. (6) of the main paper encourages
the learned loss MELTR(ℓ;ϕ) to stay within a reasonable
range to avoid meta-overfitting. Table 1 shows the ablation

Table 1. Regularization strength.

γ 0 0.001 0.01 0.1 1.0 10 100

R@1 27.6 27.8 28.1 28.4 28.6 28.6 28.5

study for Lreg by adjusting the regularization strength γ on
the text-to-video retrieval of MSRVTT-7k. Without the reg-
ularization term, i.e., γ = 0, it shows the performance of
27.6% on R@1 metric. The performance improves at γ = 1
or γ = 10 by a margin of 1% than without Lreg.

D. Effectiveness of transformer architecture

In this section, we conduct an ablation study for the
architecture type of MELTR on the text-to-video retrieval
on MSRVTT by replacing the transformer with a linear
layer. Table 2 demonstrates that the transformer architec-
ture improves by margin of 1% than the linear layer by tak-
ing advantage of the self-attention layer. Furthermore, we
use both the scale embedding and task embedding (SE +
TE) as the input of MELTR. Only with SE, MELTR can-
not consider task information and hence the performance
decreases. However, only with TE, MELTR cannot be
trained since the input losses are not passed to MELTR, i.e.,
∇wLaux is always zero.



Figure 2. Loss range for each task. The ranges of each task loss for each data sample are plotted. A clear distinction is observed between
the range of CMLM / CMFM loss and the rest of the task losses.

Table 2. The effect of MELTR architecture. Experimental re-
sults for different MELTR architectures are provided. The per-
formances are reported for video retrieval on MSRVTT. We do
not report performance for task-embedding-only Transformer, as
our optimization method is not trained properly in such a setting;
∇wLaux is always zero.

Architecture R@1

Linear 27.6

Transformer (SE+TE) 28.6
Transformer (SE only) 27.9
Transformer (TE only) -

E. Effectiveness of input type

In this section, we provide a qualitative analysis for each
input type (SE only, TE only, and SE + TE). We visualize
∂ℓtMELTR(ℓ;ϕ) denoted in Section 5.2 of the main paper.
We calculate it in the same way as in the main paper for
three input types on the video captioning task of YouCook2.

Figure 1 illustrates ∂ℓtMELTR(ℓ;ϕ) with respect to the
scales of the input loss values. When only the SE is fed
in Figure 1(a), MELTR tends to focus on reasonably chal-
lenging samples and downweight the noisy samples as dis-
cussed in Section 5.2 of the main paper. Also note that with-
out task information, we observe that the tendency is sep-
arated into two clusters with respect to ∂ℓtMELTR(ℓ;ϕ):
(LCMLM, LCMFM) and (LJoint, LM-Joint, LAlign, LM-Align,

Figure 3. Non-linearity of MELTR. MELTR (left) and MTL
(right) output with respect to LDecoder and LCMFM.

LDecoder, LM-Decoder). We believe that this is because the aux-
iliary losses are grouped based on the ranges of each loss,
as seen in Figure 2, and MELTR distinguishes the tasks to
some extent by learning the range of losses without the TE.
As for the TE in Figure 1(b), ∂ℓtMELTR(ℓ;ϕ) is obviously
invariant to the scale of losses and depend only on the task
types. LDecoder and LM-Decoder rank high because they im-
prove the performance on the video captioning task. In Fig-
ure 1(c), MELTR finally takes into account the tasks which
are advantageous on the primary task, and guides a learner
to focus on a reasonably challenging samples as discussed
in Section 5.2 of the main paper, when using the summation
of two embeddings (SE + TE).

F. Non-linearity of MELTR

MELTR provides more flexible and effective transforma-
tions beyond a simple linear combination of losses through
transformer architecture. Table 8 of the main paper evi-



Table 3. Additional quantitative results. (Left) The accuracy of video question answering on MSVD-QA is reported. (Middle) The
accuracy of action recognition on Kinetics400 is reported. (Right) The accuracy of image classification on CIFAR-100 is reported.

Models Accuracy

ALPRO 45.9
ALPRO + MELTR 46.8

Models Accuracy

Violet 72.4
Violet + MELTR 73.1

Models Accuracy

ResNet32 66.5
ResNet32 + MELTR 69.2

Table 4. Video captioning on YouCook2. B3, B4, M, and R mean
BLEU-3, BLEU-4, METEOR, and ROUGE-L, respectively. ‘Ori.’ con-
tains original five auxiliary losses: LJoint, LAlign, LCMLM, LCMFM, and
LDecoder. Also, the last column reports the averaged gain across metrics
compared to the Ori. settings of MTL and MELTR, respectively.

Auxiliary losses Training B3 B4 M R avg. gain

Ori.
MTL 20.68 14.95 20.18 44.25 +0.00

METLR 23.47 17.29 22.25 45.67 +0.00

Ori. + LM-Decoder
MTL 21.51 15.69 20.73 45.05 +0.73

MELTR 23.86 17.59 22.34 46.76 +0.47

Ori. + LM-Joint
MTL 21.00 15.19 20.46 44.63 +0.31

MELTR 23.76 17.53 22.22 46.63 +0.37

Ori. + LM-Align
MTL 20.76 15.01 20.27 44.29 +0.07

MELTR 23.55 17.45 22.16 46.56 +0.26

Ori. + LM-Decoder +
LM-Align + LM-Joint

MTL 21.72 15.93 20.89 45.16 +0.91

MELTR 24.12 17.92 22.56 47.04 +0.74

dences that MELTR outperforms two linear combinations,
the sum of losses (multi-task learning, MTL) and an adap-
tive and learned linear combination (Meta-Weight Net), by
2.4 and 1.3 R@1 in MSRVTT for text-to-video retrieval.
Qualitatively, Figure 3 shows the non-linearity of MELTR
in contrast to the multi-task learning (MTL) by visualizing
their outputs given two input losses: LDecoder and LCMFM.

G. Effectiveness of advanced loss of UniVL
For video captioning on YouCook2, in order of impor-

tance, the losses can be sorted as LM-Decoder, LM-Joint, and
LM-Align. Table 4 shows the additional ablation study on
newly added losses. First, using all three newly added
losses improves the performance with both MTL (+0.91)
and MELTR (+0.74) on average. As for the individual
loss, by adding LM-Decoder, the average performance gain
of MELTR is 0.47. On the other hand, with LM-Joint or
LM-Align, the performance gap is decreased to 0.37 and 0.26
respectively, implying that they are relatively less effective
for video captioning than LM-Decoder as observed in Sec. 5.2
of the main paper.

H. Adaptation to a new baseline and tasks
Plug-in to a new baseline. In Table 3 (Left), we con-
duct an experiment with another strong model ALPRO [28]

trained with four pretext losses. In the video question an-
swering task on MSVD-QA, ALPRO shows the original
performance of 45.9%, and MELTR improves it to 46.8%.
Video only setting. We also evaluate action recognition
performance on Kinetics400 [29] by applying MELTR to
Violet in Table 3 (Middle). Since the action recognition is
a unimodal task with only ‘videos’, we use the following
two losses: classification loss (primary task) and Masked
Visual-token Modeling loss (MVM; auxiliary task). Vio-
let’s accuracy is improved from 72.4% to 73.1%.
Image only setting. Furthermore, to verify the generaliz-
ability of MELTR to other domains, we also conduct our
experiment on the ‘image’ domain (image classification on
CIFAR-100) with ResNet32 backbone in Table 3 (Right).
We add two simple auxiliary losses (mixup [30] and rota-
tion [31]) with a basic classification loss. Our MELTR out-
performs the baseline by a margin of 2.7%. These experi-
mental results demonstrate that MELTR is a general frame-
work to be adapted to a wide range of domains and tasks.
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