
A. Theory

In this section, we give the supplementary material for
our theoretical results. We formally proof Theorem 1 and
Theorem 2 from the main paper that show masking in the
shearlet or wavelet space cannot create artificial edges for
continuous images.

A.1. ShearletX Theoretical Result

We begin by recounting the definition of the wavefront
set, which is a good model edges for continuous images,
particularly when working with shearlets.

Definition A.1. [20, Section 8.1] Let f 2 L2(R2) and
k 2 N. A point (x,�) 2 R2 ⇥ S1 is a k-regular directed
point of f if there exist open neighbourhoods Ux and V� of
x and � respectively and a smooth function � 2 C1(R2)
with supp� ⇢ Ux and �(x) = 1 such that

��c�f(⇠)
��  Ck

�
1 + |⇠|

��k 8 ⇠ 2 R2 \ {0} s.t. ⇠/|⇠| 2 V�

holds for some Ck > 0. The k-wavefront set WFk(f) is the
complement of the set of all k-regular directed points and
the wavefront set WF(f) is defined as

WF(f) :=
[

k2N
WFk(f),

The wavefront set is completely determined by the decay
properties of the shearlet transform, which is formalized in
the following Theorem from [26].

Theorem 3 (Theorem 2 in [26]). Let  be a Schwartz func-
tion with infinitely many vanishing moments in x1-direction.
Let f be a tempered distribution and D = D1 [D2, where

D1 = {(t0, s0) 2 R2 ⇥ [�1, 1] : for
(s, t) in a neighborhood U of (s0, t0),

|SH (f)(a, s, t)| = O(ak), for all k 2 N,
with the implied constant uniform over U)}

and

D1 = {(t0, s0) 2 R2 ⇥ (1,1] : for
(1/s, t) in a neighborhood U of (s0, t0),

|SH (f)(a, s, t)| = O(ak), for all k 2 N,
with the implied constant uniform over U)}.

Then
WF(f)c = D. (13)

For the following theorem, we model the edges in the
image x by the wavefront set WF(x).

Theorem 4. Let x 2 L2[0, 1]2 be an image modeled as a
L2-function. Let m be a mask on the shearlet coefficients
of x and let x̂ be the image x masked in shearlet space with
m. Then, we have WF(x̂) ⇢ WF(x) and thus masking in
shearlet space did not create new edges.

Proof. Note that the shearlet transform is invertible. Hence,
we have by definition of x̂

SH(x̂)(a, s, t) = SH(x)(a, s, t) ·m(a, s, t). (14)

To show WF(x̂) ⇢ WF(x), it suffices to show WFc(x̂) �
WFc(x). Let (t, s) 2 WFc(x) be arbitrary with |s| < 1.
Then, by definition of the wavefront set, we have for all
N 2 N

|SH(x)(a, s, t)| = O(aN ) (15)

for a ! 0. Since m(a, s, t) 2 [0, 1], we also have for all
N 2 N

|SH(x̂)(a, s, t)| = |SH(x)(a, s, t)| · |m(a, s, t)| (16)

 |SH(x)(a, s, t)| = O(aN ). (17)

This implies (t, s) 2 WFc(x̂). Thus, we showed the claim
WFc(x̂) � WFc(x).

A.2. WaveletX Theoretical Result

When analyzing WaveletX, we opt to model singulari-
ties via local Lipschitz regularity (see Definition A.2) in-
stead of using the wavefront set approach. This approach
is preferable since the Lipschitz regularity of a function is
completely characterized by the rate of decay of its wavelet
coefficients, as the scale goes to zero (see Theorem 5).

Definition A.2 (Lipschitz Regularity). A function f :
R2 ! R is uniformly Lipschitz ↵ � 0 over a domain
⌦ ⇢ R2 if there exists K > 0, such that for any v 2 ⌦
one can find a polynomial pv of degree b↵c such that

8x 2 ⌦, |f(x)� pv(x)|  K|x� v|↵. (18)

The Lipschitz regularity of f over ⌦ is the supermum over
all ↵, for which f is uniformly Lipschitz ↵ over ⌦. The
infimum of K, which satisfies the above equation, is the ho-
mogenous Hölder ↵ norm kfkC̃↵ .

Theorem 5 (Theorem 9.15 [31]). Let x 2 L2[0, 1]2 be a
continuous image with Lipschitz regularity ↵ � 0. Then
there exist B � A > 0 such that for all J 2 Z we have

AkxkC̃↵  sup
1l3,jJ,2jn2[0,1)2

|hx, l
j,ni|

2j(↵+1)
 BkxkC̃↵ .

In our Theorem 5, we will heavily rely on the connec-
tion between Lipschitz regularity and wavelet decay that is
formalized in Theorem 5. As preparation for our result, we
first give a corollary to Theorem 5 that shows a function is
uniformly Lipschitz ↵ if and only if the wavelet coefficients
decay faster than O(2j(↵+1)) for j ! �1.
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Corollary 5.1. Let a, b 2 R with a < b and consider a
continuous image x 2 L2[a, b]2 with square domain [a, b]2.
Then the following two statements are equivalent:

1. The function x is uniformly Lipschitz ↵.

2. There exists a constant C > 0 such that for all J 2 Z
with J  0, we have

sup
1l3,jJ,2jn2[a,b)2

|hx, l
j,ni|

2j(↵+1)
 C.

Proof. We prove the Corollary for [a, b]2 = [0, 1]2 and
the general case follows simply with a scaling argument.
First, we prove (1) implies (2). Suppose the function x 2
L2[0, 1]2 is uniformly Lipschitz ↵. Then x has Lipschitz
regularity ↵⇤ � ↵. By Theorem 5, we then obtain a con-
stant B̃ > 0 such that for all J 2 Z

sup
1l3,jJ,2jn2[0,1)2

|hx, l
j,ni|

2j(↵⇤+1)
 B̃kxkC̃↵⇤ .

We then have

sup
1l3,jJ,2jn2[0,1)2

|hx, l
j,ni|

2j(↵+1)

= sup
1l3,jJ,2jn2[0,1)2

|hx, l
j,ni|

2j(↵⇤+1)
2j(↵

⇤�↵)

 B̃kxkC̃↵⇤ sup
jJ

2j(↵
⇤�↵)

= B̃kxkC̃↵⇤ 2J(↵
⇤�↵)

 B̃kxkC̃↵⇤ .

By setting C := B̃kxkC̃↵⇤ , we have shown (1) implies (2).
Next, we show that (2) implies (1). Suppose there exists a
constant C such that for all J 2 Z with J < 0, we have

sup
1l3,jJ,2jn2[a,b)2

|hx, l
j,ni|

2j(↵+1)
 C. (19)

We prove x is uniformly Lipschitz ↵ by contradiction. Sup-
posed x has Lipschitz regularity � with 0  � < ↵. We
then have by Theorem 5 that there exists constants A > 0
such that for all J 2 Z

AkxkC̃�  sup
1l3,jJ,2jn2[0,1)2

|hx, l
j,ni|

2j(�+1)
. (20)

By taking J ! �1 in (20), we obtain a sequence of
(jk)k2N with jk ! �1 satisfying

A

2
kxkC̃�2jk(�+1)  |hx, l

jk,ni|  C2jk(↵+1), (21)

for all k 2 N. But this is a contradiction, since for large
enough k 2 N, jk is so negative that the upper bound in
(21) is strictly smaller then the lower bound in (21). Thus,
x must be uniformly Lipschitz ↵, which finishes the proof.

Next, we define a Lipschitz regular point of an image as
a point for which the image has locally Lipschitz regularity
↵ with ↵ � 1.

Definition A.3 (Lipschitz Regular Point). Let x 2 L2[0, 1]2

be a continuous image. Let g : R ! R be a smooth cutoff
function satisfying the following properties:

1. 8t 2 R : |t|  1/2 =) g(t) = 1

2. 8t 2 R : |t| � 1 =) g(t) = 0

3. 8t 2 R : |g(t)|  1

Define the 2d cutoff function h : R2 ! R, h(t1, t2) :=
g(t1)g(t2). We say a point t⇤ = (t⇤1, t

⇤
2) 2 [0, 1]2 is a reg-

ular point of x if there exists 0 < a  1 such that the
localized image x̃ : [0, 1]2 ! R,

x̃(t1, t2) := h((t1 � t⇤1)/a, (t2 � t⇤2)/a) · x(t1, t2)

has Lipschitz regularity ↵ � 1.

A Lipschitz singular point is any point that is not a Lip-
schitz regular point. Lipschitz singular points model image
elements such as edges and point singularities.

Theorem 6. Let x 2 L2[0, 1]2 be an image. Consider an
orthonormal wavelet basis that comprises compactly sup-
ported wavelets. Let m be a bounded mask in wavelet space
and denote by x̂ the image x masked in wavelet space with
m. Then, every Lipschitz regular point t⇤ of x is also a
Lipschitz regular point of x̂.

Proof. Let t⇤ = (t⇤1, t
⇤
2) 2 [0, 1]2 be a Lipschitz regular

point of x. By definition, there exists 0 < a  1, such that
the localized image

x̃ : [0, 1]2 ! R, (22)
x̃(t1, t2) := h((t1 � t⇤1)/a, (t2 � t⇤2)/a) · x(t1, t2) (23)

has Lipschitz regularity ↵ � 1, where h : R2 ! R is the
smooth cutoff function from Definition A.3). By Theorem
5, there exists a constant B > 0 such that for every J 2 Z

sup
1l3,jJ,2jn2[0,1)2

|hx̃, l
j,ni|

2j(↵+1)
 Bkx̃kC̃↵ . (24)

By definition of the smooth cutoff function h, we know that
h is equal to 1 on the square Sa(t⇤) with side length a, cen-
tered at t⇤ 2 [0, 1]2. For each j 2 Z, we define the set

⌦j :=
n
(n1, n2) 2 N2 : supp j,n ⇢ Sa(t

⇤)
o
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of grid locations at scale 2j where the wavelet support is
contained in Sa(t⇤). Note there exists a sufficiently small
J⇤ 2 Z, such that ⌦j 6= ;, for all j  J0. Fix such a
J⇤ 2 Z. Then, for all j  J⇤ and n 2 ⌦j , we have

8t 2 supp l
j,n : x̃(t) = x(t) (25)

because x̃ is obtained as x times a cutoff function, which is
equal to 1 on the square Sa(t⇤) � supp l

j,n 3 t. Since the
wavelet system is assumed to be an orthonormal basis, the
wavelet coefficients of x̂ are equal to the masked wavelet
coefficients of x, namely hx̂, l

j,ni = mj,nhx, l
j,ni, where

mj,n is the mask entry for the wavelet coefficient with pa-
rameters (j, n). We then have

sup
1l3,jJ⇤,n2⌦j

|hx̂, l
j,ni|

2j(↵+1)

= sup
1l3,jJ⇤,n2⌦j

|mj,n||hx, l
j,ni|

2j(↵+1)
.

Without loss of generality we can assume supj,n |mj,n| 
1, otherwise we would just add a constant factor to the anal-
ysis. We obtain

sup
1l3,jJ⇤,n2⌦j

|hx̂, l
j,ni|

2j(↵+1)
(26)

 sup
1l3,jJ⇤,n2⌦j

|hx, l
j,ni|

2j(↵+1)
(27)

= sup
1l3,jJ⇤,n2⌦j

|hx̃, l
j,ni|

2j(↵+1)
, (28)

where we used property (25) for the last equality. We further
upper bound the expression by taking the supremum over a
larger set of indices:

sup
1l3,jJ⇤,n2⌦j

|hx̃, l
j,ni|

2j(↵+1)
(29)

 sup
1l3,jJ⇤,2jn2[0,1)2

|hx̃, l
j,ni|

2j(↵+1)
 Bkx̃kC̃↵ , (30)

where we used the upper bound on the wavelet decay from
(24) for the last inequality. Overall, we showed

sup
1l3,jJ⇤,n2⌦j

|hx̂, l
j,ni|

2j(↵+1)
 Bkx̃kC̃↵ . (31)

Next, choose a0 := a/2 and consider the smaller square
Sa0(t⇤) ⇢ Sa(t⇤) of side length a0 which is centered at
t⇤. There exists a sufficiently small scale J0 2 Z so that
wavelets with scale parameter j  J0 whose support inter-
sects Sa0(t⇤) must be contained in Sa(t⇤). Namely, for all
j  J0 and n 2 Z2, we have

supp j,n \ Sa0(t⇤) 6= ; =) supp j,n ⇢ Sa(t
⇤). (32)

Next, we project x̂ to have only scales smaller than 2J0 with
the projection operator PJ0 :

PJ0 x̂ :=
X

jJ0

X

2jn2[0,1)2

hx̂, l
j,ni l

j,n. (33)

We show next that PJ0 x̂ is uniformly Lipschitz ↵ � 1 on
Sa0(t⇤). We have, for every J 2 Z,

sup
1l3,jJ,2jn2Sa(t⇤)

|hPJ0 x̂, 
l
j,ni|

2j(↵+1)
(34)

 sup
1l3,jJ0,n2⌦j

|hPJ0 x̂, 
l
j,ni|

2j(↵+1)
(35)

= sup
1l3,jJ0,n2⌦j

|hx̂, l
j,ni|

2j(↵+1)
(36)

 Bkx̃kC̃↵ , (37)

where we used in the equality (35) that the wavelet coef-
ficients of PJ0 x̂ for scale parameters j > J0 are zero and
equation (32). In equality (36), we used that hPJ0 x̂, 

l
j,ni =

hx̂, l
j,ni for all j  J0, and for the last inequality (37) we

used the inequality in (31) where J⇤ can be chosen as J0.
We can apply now Corollary 5.1 to PJ0 x̂, which shows that
PJ0 x̂ is uniformly Lipschitz ↵ � 1 on the domain Sa0(t⇤).
The Lipschitz ↵ property is determined by the asymptotics
of the wavelet coefficients for scales going to 0. Therefore,
if the projection PJ0 x̂ is uniformly Lipschitz ↵ on the do-
main Sa0(t⇤) then so is x̂ uniformly Lipschitz ↵ on the do-
main Sa0(t0). Finally, we show that t⇤ is a regular point
of x̂. We take a sufficiently small scaling factor a00 with
0 < a00 < a0 so that the cutoff function

(t1, t2) 7! h((t1 � t⇤1)/a
00, (t2 � t⇤2)/a

00)

has support contained in S↵0(t⇤). The localized image

h
�
(t1 � t⇤1)/a

00, (t2 � t⇤2)/a
00� · x̂(t1, t2) (38)

is then a product of a uniformly Lipschitz ↵ image with a
smooth cut-off function, and is hence a uniformly Lipschitz
↵ function with regularity � ↵. Hence, t⇤ is a regular point
of x̂, which finishes the proof.

B. Experiments

In this section, we give the supplementary material for
our experiments in Section 7.

B.1. Implementation Details

We implemented our methods and experiments in Py-
Torch [32] and describe the details for each method in the
following.
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ShearletX

Our implementation of the shearlet transform is an adapta-
tion of the python library pyShearLab2D3 to PyTorch. The
digital shearlet coefficients of a 3 ⇥ 256 ⇥ 256 image are
returned as a 49 ⇥ 3 ⇥ 256 ⇥ 256 tensor where the first
49 channels capture the discretely sampled scale and shear-
ing parameters of the shearlet transform. To optimize the
shearlet mask on the 49⇥ 3⇥ 256⇥ 256 tensor, we use the
Adam optimizer [23] with learning rate 10�1 and for the
other Adam parameters we use the PyTorch default setting.
The mask is optimized for 300 steps. The expectation in the
ShearletX optimization objective

max
m

E
u⇠⌫

h
�c(DSH�1(m�DSH(x) + (1�m)� u))

i

� �1kmk1 � �2kDSH�1(m�DSH(x))k1,

is approximated with a simple Monte Carlo average over 16
samples from ⌫, which samples uniform noise adapted to
each scale and shearing parameter. More precisely, the per-
turbation for scale a and shearing s is sampled uniformly
from [µa,s � �a,s, µa,s + �a,s] where �a,s and µa,s are the
empirical standard deviation and mean of the image’s shear-
let coefficients at scale a and shearing s. The mask is ini-
tialized with all ones as in [24]. For the hyperparameters �1
and �2, we found �1 = 1 and �2 = 2 to work well in prac-
tice but many other combinations are possible if one desires
more or less sparse explanations.

WaveletX

The discrete wavelet transform (DWT) returns approxima-
tion coefficients and detail coefficients. The detail coeffi-
cients are parametrized by scale and by orientation (verti-
cal, horizontal, and diagonal). The number of DWT coef-
ficients is the same as the number of pixels and WaveletX
optimizes a mask on the DWT coefficients. For the imple-
mentation of the DWT, we use the PyTorch Wavelets pack-
age4. The mask on the DWT coefficients is optimized with
the Adam optimizer [23] with learning rate 10�1 and for the
other Adam parameters we use the PyTorch default setting.
The mask is optimized for 300 steps. The expectation in the
WaveletX optimization objective

max
m

E
u⇠⌫

h
�c(DWT �1(m�DWT (x) + (1�m)� u))

i

� �1kmk1 � �2kDWT �1(m�DWT (x))k1,

approximated with a simple Monte Carlo average over 16
samples from ⌫, which samples uniform noise adapted to

3https://na.math.uni-goettingen.de/pyshearlab/
pyShearLab2D.m.html

4https://pytorch- wavelets.readthedocs.io/en/
latest/readme.html

each scale of the wavelet coefficients, analogous to Shear-
letX. More precisely, the perturbation for scale a is sampled
uniformly from [µa � �a, µa + �a] where �a and µa are
the empirical standard deviation and mean of the image’s
wavelet coefficients at scale a. The mask is initialized with
all ones as in ShearletX and in [24]. For the hyperparame-
ters, �1 and �2 we found �1 = 1 and �2 = 10 work well
in practice but many other combinations are possible if one
desires more or less sparse explanations.

CartoonX

For the examples in the CartoonX method from [24], we
used the same parameters and procedure as WaveletX but
set �2 = 0. This is because CartoonX and WaveletX only
differ in the new spatial penalty that is controlled by �2.

Smooth Pixel Mask

For the smooth pixel mask method by Fong et al. [13], we
use the TorchRay5 library, which was written by Fong et
al. [13]. The only hyperaparameter for smooth pixel masks
is the area constraint, where we use only the values 20%,
10%, or 5%, as did Fong et al. [13].

Pixel Mask without Smoothness Constraints

The pixel mask method without smoothness constraints has
the following optimization objective:

max
m2[0,1]

E
u⇠⌫

h
�c(x�m+ (1�m)� u)

i
� � · kmk1,

The mask m on the pixel coefficients is optimized with the
Adam optimizer [23] with learning rate 10�1 and for the
other Adam parameters we use the PyTorch default setting.
The mask is optimized for 300 steps. The expectation in the
optimization objective is approximated with a simple Monte
Carlo average over 16 samples from ⌫, which is chosen as
uniform noise from [��+ µ, µ+ �], where µ and � are the
empirical mean an standard deviation of the pixel values of
the image, as in [24].

Edge Detector

For the edge detector, we use a shearlet-based edge detector,
introduced by Reisenhofer et al. in [34] and adapt the im-
lementation (PyCoShREM6 library) by Reisenhofer et al.
in [34] to PyTorch. We used the shearlet-based edge de-
tector because it was able to extract edges more reliably
than a Canny edge detector [7] and is mathematically well-
founded.

5]https://github.com/facebookresearch/TorchRay
6https://github.com/rgcda/PyCoShREM
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B.2. Runtime

In Table 1, we compare the runtime of ShearletX and
WaveletX for the ImageNet classifier MobilenetV3Small
[21] to (1) smooth pixel mask [13], (2) pixel attribution
methods, such as, Guided Backprop [41], Integrated Gra-
dients [42], and Grad-CAM [37], and (3) LIME [35]. All
mask explanations, i.e., smooth pixel masks, WaveletX, and
ShearletX, are much slower than the pixel attribution meth-
ods, which only use a single backward pass for the expla-
nation. ShearletX is roughly 5⇥ slower than smooth pixel
masks and WaveletX, because the shearlet mask has more
entries than pixels or wavelet coefficients and the shearlet
transform involves more computations. In the future, we
are eager to significantly speed-up ShearletX by optimizing
our implementation, using a less redundant shearlet system
to reduce the numbner of coefficients of the mask, and ex-
ploring better initialization strategies for the shearlet mask
to obtain faster convergence. For instance, we hope to train
a neural network in the future that outputs mask initializa-
tions for ShearletX that lead to faster convergence.

Method Time

Integrated Gradients [42] 0.31s
Guided Backprop [41] 0.13s
Grad-CAM [37] 0.13s
LIME [35] 5.22s
Smooth Mask [13] 11.61s
WaveletX (ours) 7.99s
ShearletX (ours) 54.26s

Table 1. Computation time for explanation of MobilenetV3Small
[21] decision on ImageNet [11]. It is well-known that mask expla-
nations are more computationally expensive than pixel attribution
methods, such as Integrated Gradients [42], Grad-CAM [37], and
Guided Backprop [41]. ShearletX is slower than WaveletX and
Smooth Pixel Masks [13] due to the mask on the shearlet repre-
sentation being larger and shearlets involving more computations.

B.3. Scatter Plots

The scatter plots in Figure 4 in the main paper compares
the hallucination score and conciseness-preciseness score
between ShearletX, WaveletX, smooth pixel masks by Fong
et al. [13], and pixel masks without smoothness constraints.
In this section, we provide evidence that our results from
Figure 4 are consistent across different area constraints for
smooth pixel masks and across different classifiers. In Fig-
ure 8, we show the scatter plots for Resnet18 [17] for the
area constrains 5%, 10%, and 20%. Figure 9 shows the
same plots for a MobilenetV3Small [21] network.

B.4. Quantitative Comparison

Pixel attribution methods, such as Integrated Gradi-
ents [42], Guided Backprop [41], and Grad-CAM [37],
are commonly compared by insertion and deletion curves
[4, 24, 33, 36], which gradually insert/delete the most rele-
vant pixels and observe the change in class probability. A
good insertion curve exhibits a rapid initial increase in class
probability and large area under the curve. A good dele-
tion curve exhibits a rapid initial decay and small area under
the curve. Comparing ShearletX on insertion and deletion
curves poses two challenges: (1) ShearletX is given by a
mask that is defined in shearlet space and not in pixel space,
as in other methods. (2) ShearletX does not give a proper
ordering for the relevance of coefficients due to the binary
nature of the mask.

In Figure 6, we compare insertion and deletion curves
for ShearletX, where we perturb the most relevant coeffi-
cients for ShearletX in shearlet space. Insertion and dele-
tion curves are averaged over 50 random ImageNet vali-
dation samples and compared on MobilenetV3Small [21],
ResNet18 [17], and VGG16 [39]. ShearletX performs best
among compared methods on the initial part of the inser-
tion curves in Figure 6, exhibiting a rapid initial increase
in probability score. This is what ShearletX was optimized
for: keeping very few coefficients that retain the classifica-
tion decision. However, once ShearletX achieves its peak,
coefficients are inserted that were probably marked as zero
and not further ordered by the shearlet mask and there-
fore inserted in arbitrary order. Consequently, the proba-
bility score collapses after the peak. Similar behavior is ob-
served for the deletion curve, which initially decays rapidly
for ShearletX and then slows down due to the lacking or-
dering of unselected coefficients. The hyperparameters for
ShearletX in the experiments of Figure 6 are (�1 = 1 and
�2 = 2).

In Figure 7, we also experiment with a pixel ordering for
ShearletX by ordering pixels simply by their magnitude in
the ShearletX explanation. Surprisingly, this ordering beats
all other compared methods on the insertion curves on two
out of three classifiers that we evaluate. The deletion curves
for the pixel ordering of ShearletX are competitive but not
outperforming the other methods. For the pixel ordering of
ShearletX, we used smaller sparsity parameters (�1 = 0.5
and �2 = 0.5) to avoid having too many deleted pixels in
ShearletX that cannot be ordered uniquely.
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Figure 6. Insertion and deletion curves for ShearletX and popular pixel attribution methods (Integrated Gradients [42], Grad-CAM [37],
and Guided Backprop [41]), where representation coefficients are flipped and set to zero. For ShearletX, the representation coefficients
are the shearlet coefficients and for all other methods, the pixel coefficients. Insertion curves plot the percentage of inserted representation
coefficients (the most relevant coefficients first) against the retained class probability (class probability after perturbing divided by original
class probability). Deletion curves plot the percentage of deleted representation coefficients (the most relevant coefficients first) against the
retained class probability. First row: Insertion curves for MobilenetV3SMall [21], ResNet18 [17], and VGG16 [39]. Second row: Deletion
curves for MobilenetV3SMall [21], ResNet18 [17], and VGG16 [39].

Figure 7. Insertion and deletion curves for ShearletX and popular pixel attribution methods (Integrated Gradients [42], Grad-CAM [37],
and Guided Backprop [41]). For ShearletX, we sort pixels by magnitude in the explanation. Insertion curves plot the percentage of inserted
pixels (the most relevant pixels first) against the retained class probability (class probability after perturbing divided by original class
probability). Deletion curves plot the percentage of deleted pixels (the most relevant pixels first) against the retained class probability.
Deleted pixels are replaced with blurred pixel values. First row: Insertion curves for MobilenetV3SMall [21], ResNet18 [17], and VGG16
[39]. Second row: Deletion curves for MobilenetV3SMall [21], ResNet18 [17], and VGG16 [39].
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(a) Smooth Pixel Mask Area Constraint: 5% (b) Smooth Pixel Mask Area Constraint: 5% (c) Smooth Pixel Mask Area Constraint: 5%

(d) Smooth Pixel Mask Area Constraint: 10% (e) Smooth Pixel Mask Area Constraint: 10% (f) Smooth Pixel Mask Area Constraint: 10%

(g) Smooth Pixel Mask Area Constraint: 20% (h) Smooth Pixel Mask Area Constraint: 20% (i) Smooth Pixel Mask Area Constraint: 20%

Figure 8. Scatter plots of hallucinaton score (lower is better) and conciseness-preciseness score (higher is better) for ShearletX, WaveletX,
smooth pixel masks [13], and pixel mask without smoothness constraints. We used the classifier ResNet18 [17] for all scatter plots. First
row uses smooth pixel masks [13] with area constraint 5%, second row uses 10%, and last row uses 20%. The scatter plots shows that the
advantage of ShearletX over smooth pixel masks [13] holds for different area constraints.
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(a) Smooth Pixel Mask Area Constraint: 5% (b) Smooth Pixel Mask Area Constraint: 5% (c) Smooth Pixel Mask Area Constraint: 5%

(d) Smooth Pixel Mask Area Constraint: 10% (e) Smooth Pixel Mask Area Constraint: 10% (f) Smooth Pixel Mask Area Constraint: 10%

(g) Smooth Pixel Mask Area Constraint: 20% (h) Smooth Pixel Mask Area Constraint: 20% (i) Smooth Pixel Mask Area Constraint: 20%

Figure 9. Scatter plot of hallucinaton score (lower is better) and conciseness-preciseness score (higher is better) for ShearletX, WaveletX,
smooth pixel masks [13], and pixel mask without smoothness constraints. We used MobilenetV3Small [21] as a classifier for all scatter
plots. First row uses smooth pixel masks [13] with area constraint 5%, second row uses 10%, and last row uses 20%. The scatter plots
shows that the advantage of ShearletX over smooth pixel masks [13] holds for different area constraints. The scatter plots compared to
Figure 8 also show that the advantage of ShearletX over smooth pixel masks [13] holds for different classifiers.

18


	. Introduction
	. Related Work
	. Background
	. Method
	. Theory
	. Explanation Metrics for Mask Explanations
	. Experiments
	. Conclusion
	. Theory
	. ShearletX Theoretical Result
	. WaveletX Theoretical Result

	. Experiments
	. Implementation Details
	. Runtime
	. Scatter Plots
	. Quantitative Comparison


