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Overview
In this document, we first provide further analysis on the proposed method in Section 1. Then, we show that the proposed

method can be applied to other low-level vision tasks in Section 2. Finally, we show more visual comparisons of the proposed
method and state-of-the-art ones in Section 3.

1. Further Analysis on the Proposed Method
As stated in Section 5 of the main manuscript, we have analyzed the effectiveness of the proposed frequency domain-based

self-attention solver (FSAS) and the discriminative frequency domain-based feed-forward network on image deblurring.
We have shown that using these proposed components achieves favorable performance against state-of-the-art methods on
benchmarks while requiring lower computational costs and GPU memory.

Effect of the asymmetric encoder-decoder network. In Table 6 of the main manuscript, we have shown that using the
proposed FSAS in both the encoder module and decoder module affects the final deblurred performance because the shallow
features extracted by the encoder module usually contain blur effects that affect the estimations of the FSAS. In this document,
we further compare the proposed method with the method only using the FSAS in the encoder module. Table 1 shows that only
using the FSAS in the encoder module does not generate better results compared to the proposed method (see comparisons of
“FSAS in enc” and “FSAS in dec (Ours)”). Figure 1 further shows that using the FSAS in the encoder module does not remove
the blur effect well.

Table 1. Quantitative evaluations of the asymmetric encoder-decoder network on the GoPro dataset. Using the FSAS only in the encoder
module or both in the encoder and decoder modules does not have better results compared to the proposed method using the FSAS only in
the decoder module.

Methods FSAS in enc FSAS in enc&dec FSAS in dec (Ours)

PSNRs 30.27 33.56 33.73
SSIMs 0.9337 0.9653 0.9663

Effect of the size of the quantization matrix. In our implementation, we use the patch size of 8 × 8 for the quantization
matrix. We further examine the effect of the patch size on image deblurring, we Table 2 shows the effect of the quantization
matrix size on the GoPro dataset. Given the performance and model complexity, we use 8× 8 in the paper.

Memory analysis of the FSAS. In Table 4 of the main manuscript, we have shown that the proposed FSAS needs a small
GPU memory. In this document, we explain why the maximum GPU memory of the fast Fourier transform (FFT) decreases
with the window size in Table 4 of the main manuscript. We test the maximum GPU memory of the FFT separately which is
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(a) Blurred image (b) FSAS in enc (c) FSAS in dec

Figure 1. Effect of the asymmetric encoder-decoder network. Using the proposed FSAS in the encoder module does not remove the blur
effect well as shown in (b). In contrast, using the FSAS in the decoder module generates clearer images as shown in (c).

computed by the “torch.cuda.max_memory_allocated()” function. The size of the test tensor X is [1, 64, 1024, 1024]. We



Table 2. Effect of the size of the quantization matrix.

Size of the the quantization matrix 4× 4 8× 8 16× 16
SSIMs 33.64 33.73 33.65
SSIMs 0.9656 0.9663 0.9657
Parameters 15.5M 16.6M 20.8M

Table 3. Memory of the FFT with different window sizes.

Window size 4× 4 8× 8 16× 16 32× 32 64× 64 128× 128 256× 256 512× 512 1024× 1024

GPU memory 1024M 896M 832M 800M 784M 776M 772M 772M 769M

rearrange X into Xr with the size of
[
1, 64, 1024

windows_size ,
1024

windows_size ,window_size,window_size
]
. Table 3 shows the maximum

GPU memory when applying the FFT to Xr.
We note that the maximum GPU memory of the FFT decreases with the window_size. This is mainly because the

management of GPU memory in PyTorch is a hierarchical structure. It means that even if we allocate 4KB memory, the
program will take up 2MB memory, which means Xr with a smaller window size needs to request memory more frequently.
Thus when the window size is smaller, the maximum GPU memory of the fast Fourier transform (FFT) is larger.

2. Other Applications
We further show that the proposed method can be applied to other related low-level vision tasks. Following the protocols

of [14], we train and evaluate our method on the image deraining task. Table 4 shows that our method works well on image
deraining.

Table 4. Evaluations of the proposed method on image deraining. The results are obtained from the Test100 dataset [16]

Methods MPRNet [15] KiT [5] Restormer [14] MAXIM [12] Ours
PSNRs 30.27 30.26 32.00 31.17 31.40
SSIMs 0.897 0.904 0.923 0.922 0.919

3. More Experimental Results
In this section, we provide more visual comparisons of the proposed method and state-of-the-art ones on benchmarks.
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(a) Blurred image (b) GT

(c) MIMO-Unet+ [2] (d) Restormer [14]

(e) Stripformer [11] (f) Restormer-local [3]

(g) NAFNet [1] (h) Ours

Figure 2. Deblurred results on the GoPro dataset [7]. The deblurred results in (c)-(g) still contain significant blur effects. The proposed
method generates a clearer image, where the windows of the car are much clearer.



(a) Blurred image (b) GT

(c) MIMO-Unet+ [2] (d) Restormer [14]

(e) Stripformer [11] (f) Restormer-local [3]

(g) NAFNet [1] (h) Ours

Figure 3. Deblurred results on the GoPro dataset [7]. State-of-the-art methods [1–3, 11, 14] do not restore the characters well. In contrast,
our method generates a clearer image with recognizable characters.



(a) Blurred image (b) GT

(c) MIMO-Unet+ [2] (d) Restormer [14]

(e) Stripformer [11] (f) Restormer-local [3]

(g) NAFNet [1] (h) Ours

Figure 4. Deblurred results on the GoPro dataset [7]. State-of-the-art methods [1–3, 11, 14] do not restore the numbers well. In contrast, our
method generates a clearer image, where the numbers are much clearer.



(a) Blurred image (b) GT

(c) MIMO-Unet+ [2] (d) MPRNet [15]

(e) Restormer [14] (f) Stripformer [11]

(g) Restormer-local [3] (h) Ours

Figure 5. Deblurred results on the HIDE dataset [9]. The deblurred results in (c)-(g) still contain artifacts in the face. The proposed method
generates a clearer face image.



(a) Blurred image (b) GT

(c) MIMO-Unet+ [2] (d) MPRNet [15]

(e) Restormer [14] (f) Stripformer [11]

(g) Restormer-local [3] (h) Ours

Figure 6. Deblurred results on the HIDE dataset [9]. The deblurred results in (c)-(g) still contain significant blur effects. The proposed
method generates a clearer image. For example, the fingers and face are much clearer.



(a) Blurred image (b) GT

(c) MIMO-Unet+ [2] (d) MPRNet [15]

(e) Restormer [14] (f) Stripformer [11]

(g) Restormer-local [3] (h) Ours

Figure 7. Deblurred results on the HIDE dataset [9]. The deblurred results in (c)-(g) still contain significant blur effects. The proposed
method generates a clearer image. For example, the the textures of clothes are much clearer.



(a) Blurred image (b) GT

(c) DeblurGAN [4] (d) SRN [10]

(e) MIMO-Unet+ [2] (f) DeepRFT+ [6]

(g) Stripformer [11] (h) Ours

Figure 8. Deblurred results on the RealBlur dataset [8]. State-of-the-art methods [2,4,6,10,11] do not restore the characters well. In contrast,
the proposed method generates a better image with clearer characters.



(a) Blurred image (b) GT

(c) DeblurGAN [4] (d) SRN [10]

(e) MIMO-Unet+ [2] (f) DeepRFT+ [6]

(g) Stripformer [11] (h) Ours

Figure 9. Deblurred results on the RealBlur dataset [8]. The deblurred results in (c)-(g) still contain significant blur effects. The proposed
method generates a clearer image. For example, the icons and light are much clearer.



(a) Blurred image (b) GT

(c) DeblurGAN [4] (d) SRN [10]

(e) MIMO-Unet+ [2] (f) DeepRFT+ [6]

(g) Stripformer [11] (h) Ours

Figure 10. Deblurred results on the Realblur dataset [8]. The deblurred results in (c)-(g) still contain significant blur effects. The proposed
method generates a clearer image. For example, the iron wire and the ladder are much clearer.


