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1. Training Details
All the experiments were implemented in Pytorch soft-

ware on 64-bit Ubuntu Linux system with 96GB RAM and
24GB Nvidia Titan RTX GPU. All the images were nor-
malized to [-1, 1]. We train all methods using the Adam
optimizer with the learning rate of 1e-4 and (β1 ,β2) = (0.5,
0.999). In the case of 2D and 3D, the batch size is set to 8
and 1 respectively, and the weight decay is 1e-4. The weight
of all similarity losses is set to 1.

Normalized Cross-correlation (NCC) is used to de-
scribe the correlation between two vectors or samples of
the same dimension. As shown in Eq 1.
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(f (x, y)− µf ) (t (x, y)− µt) (1)

Where, f() and t() are two vectors or samples, and n is
vector dimension or window size, σ is the standard deviation
of various samples, µ is the mean value of each sample.

Mutual Information(MI) is used to describe the degree
of interdependence between variables. As shown in Eq 2.∑

x,y

p (x, y) log
p (x, y)

p (x) p (y) (2)

p(x) and p(y) are the probability distributions of values in
X and Y, respectively.

Modal Independent Neighborhood Descriptor(MIND)
is used to describe the local modal characteristics around
each voxel. First, Dp is defined as the similarity measure
between image patches.

Dp(I, x1, x2) =
1

|P |
∑
t

(I(x1 + t)− I(x2 + t))2 (3)

*Corresponding author.

I is the image, x1 and x2 are the two locations in the image,
and P is the displacement set from voxel with patch size p ∗
p ∗ p to the center of the patch. Therefore, Dp calculates the
mean square deviation between two image patches centered
on x1 and x2. Next is the definition of MIND:

MINDp(I, x, r) = exp

(
−Dp(I, x, x+ r)

V (I, x)

)
(4)

Where r is the distance vector. V (I, x) is the evaluation of
local variance. We make MIND a Gaussian function of Dp,
that is, low response when patches are not similar, and high
response when patches are similar. Finally, we want to align
the mean value of the absolute difference between the MIND
of the two images.
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∑
r

|MIND(A, x, r)−MIND(B, x, r) (5)

CycleGAN uses two downsampling convolution blocks,
nine residual blocks, two up-sampling deconvolution blocks
and four discriminator layers. The CycleGAN was devel-
oped which was based on the assumption that the genera-
tor G from the source domain X to the target domain Y
(G : X → Y ) was the reverse of the generator F from Y to
X (F : Y → X).

min
G

min
F

LCyc (G,F ) = Ex [∥F (G (x))

− x∥1 + Ey [∥G (F (y))− y∥1]
(6)

min
G

max
D

LAdv (G,D) = Ey [log (D (y))]

+ Ex [log (1−D (G (x)))]
(7)
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RegGAN based on "loss-correction" shown in Eq 8.
The solution corrects the output of the generator G(xn) by
modeling a noise transition ϕ to match the noise distribution.
Previously. Also, the RegGAN add the adversarial loss
between the generator and the discriminator (Eq 7),

Ĝ = argmin
G

1

N

N∑
n=1

L (ϕ ◦G (xn) , ỹn) (8)

2. Weight of smooth loss
In addition to smoothness loss weight, all our comparison

methods adopt the same network structure and the same
parameter settings. Because the loss magnitude obtained by
different methods of calculating similarity is also different,
it is necessary to adjust the ratio between similarity and
smoothness for each method. The settings are shown in
Table 1.

Weight

Method
NCC MI MIND CycleGAN RegGAN IMSE

λ 5 8 1 1 1 1

Table 1. Different smoothness loss weights for different methods.
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