
A. Proof for Theorem 1

Algorithm 1 Search for the minimal c and sm. c and sm dis-
cussed in text can be viewed as the concatenations of vectors in C and
Sm. LocateParents(·) pins down the locations Z’s parents in the graph.
DirectedPaths(d,X c

m) returns the set of variables on the directed paths
between d and X c

m.

1: inputs: The hierarchical graph structure G, and the
partitioned observables Xm, Xmc .

2: C,Sm ← ∅, ∅.
3: Selection stage:
4: for x ∈ Xm do
5: Z ← {x}.
6: while Z ̸= ∅ do
7: Z, E ← LocateParents(Z)
8: Sm ← Sm ∪ E
9: for p ∈ Z do

10: if p ∈ Ancestors(xmc) then
11: C ← C ∪ {p}
12: Z ← Z \ {p}
13: Pruning stage:
14: for d ∈ C do
15: for d′ ∈ C \ {d} do
16: if d′ ∈ DirectedPaths(d,Xmc) then
17: C ← C \ {d}

return C, Sm

Algorithm 2 Search for smc given C. LocateParents(p) pins
down the locations p’s parents in the graph.

1: inputs: The hierarchical graph structure G, the parti-
tioned observables Xm, Xmc , and C returned by Algo-
rithm 1.

2: Smc ← ∅.
3: for x ∈ Xmc do
4: P,P ′ ← {x}, ∅.
5: while P ≠ ∅ do
6: for p ∈ P do
7: for p′ ∈ LocateParents(p) do
8: if p′ is exogenous then
9: Smc ← Smc ∪ {p′}

10: else if p′ ∈ C then
11: Smc ← Smc ∪ (LocateParents(p) \
{p′})

12: else
13: P ′ ← P ′ ∪ {p′}
14: P ← P ′

return C, Sm

Proof. We will directly show that Algorithm 1 returns the minimal
set of variables that satisfy all conditions in Theorem 1, which

implies its existence. We will then argue that such C is unique for
a specific mask m.

Condition 1: We first discuss the invertibility of gxm. We note
that due to the invertibility assumption of the generating process,
each backtrack step in Algorithm 1 is invertible (lossless). Thus,
it is obvious that the before the pruning stage, the mapping be-
tween (C,Sm) and Xm is invertible, as the information of Xm is
either stored in either C or Sm. We now show that the pruning
stage does not break this invertibility. To see this, we note that for
each c that is removed in the pruning stage, there exists c′ ∈ C on
the directed path from c to Xmc (per Algorithm 1). Therefore, c
is a parent/ancestor of c′ and can thus be retrieved by backtrack-
ing from c′ thanks to the invertibility of the generating process.
Therefore, the mapping between (C,Sm) and Xm is invertible.

We now address the invertibility of gxmc , i.e., the mapping be-
tween (C,Smc) and Xmc . We observe that a similar argument
applies: Algorithm 2 dictates that the latent variables from the
backtracking from Xmc are either stored in either C or Smc . It
follows that invertibility of gxmc .

Condition 2: We show that (c, sm, smc) returned by Algo-
rithm 1 and Algorithm 2 satisfies Condition 2 by contradiction. We
suppose that sm ̸⊥⊥ (c, smc). Then it implied that ∃d ∈ (c, smc),
∃ε ∈ sm, such that d ∈ Descendants(ε). More precisely, it fol-
lowed that there was a directed path that started from ε and ended
at d, and a child of ε, denoted as δ, was located on this path. If
d ̸∈ Descendants(ε), there would be no directed paths from ε to d
and thus at least one V-structure would sit on each path between ε
and d that blocked the path. According to Algorithm 1, as ε ∈ sm,
it implied that δ ̸∈ c and δ ̸∈ Ancestors(xm) ∩ Ancestors(xmc).

We first investigate the case where d ∈ c, i.e., sm ̸⊥⊥ c.
The fact that d ∈ c implied that d ∈ Ancestors(xm) ∩
Ancestors(xmc) which further implied that δ ∈ Ancestors(xm)∩
Ancestors(xmc) as δ was an ancestor of d. Therefore, we have ar-
rived at a contraction to the observation that δ ∈ Ancestors(xm)∩
Ancestors(xmc).

We now discuss the scenario where d ∈ smc . By design, Al-
gorithm 2 ensures that smc contains two types of latent variables,
exogenous variables and a spouse of latent variables in c. As sm
consists solely of exogenous variables and exogenous variables are
independent mutually, it could only be the case that d was a spouse
of a latent variable in c. By Algorithm 1, there would be a di-
rected path from δ to xm. Also, Algorithm 2 ensured that d lied
on a path directed to xmc . As there existed a directed path from δ
to d, there must exist a directed path from δ to xmc . Therefore,
δ ∈ Ancestors(xm) ∩Ancestors(xmc) which contradicts the fact
established above.

Therefore, these contradiction implies that sm ⊥⊥ (c, smc).
So far, we have shown that Algorithm 1 and Algorithm 2 yield

(c, sm, smc) that fulfills the conditions of Figure 3. In the follow-
ing, we show that (c, sm) is the minimal solution and it unique.

Uniqueness and minimality of (c, sm): We now reason
about that given the mask and the hierarchical structure, (c, sm)
returned by Algorithm 1 is the set of minimal dimensionality that
can fulfill the conditions and such a minimal set is unique.

By construction, Algorithm 1 ensures that for each c ∈ C there
exists a (undirected) path that is made up of a directed path from
c to the masked variable xm and a directed path from from c to
the unmasked variable xmc and no other c′ ∈ C sits on this entire
undirected path. To see this, there must exist a directed path from
c to xm without any other c′ ∈ C on it, otherwise c would not
be placed in C in Algorithm 1. In addition, the pruning stage of
Algorithm 1 mandates that there must exist xmc such that the path
from c to xmc does not contain other c′ ∈ C. We note that c
chosen by Algorithm 1 is the variable with the smallest possible
dimension to block such a path, as it resides on the highest level
compared to other variables on the path and the variable dimension
increases monotonically along directed paths.

Therefore, the choice of the each c is minimal and such a
choice is unique. As Sm is the set of exogenous variables nec-
essary for C to restore Xm, the selection of Sm is also unique.
Hence, we conclude that the (C,Sm) returned by Algorithm 1 is
the minimal choice and is unique.

B. Identifiability proof
Theorem 3. The generating process (Figure 3) is defined as fol-
lows:

[v1,v2] = g(c, s1, s2), (3)

v1 = g1(c, s1), (4)

v2 = g2(c, s2), (5)

where c ∈ C ⊂ Rdc , s1 ∈ S ⊂ Rds1 , and s2 ∈ S2 ⊂ Rds2 . Both
g1 and g2 are smooth and have non-singular Jacobian matrices
almost anywhere, and g is invertible.

If ĝ1 : Z → V1 and ĝ2 : Z → V2 assume the generating
process of the true model (g1, g2) and match the joint distribution
pv1,v2 , then there is a one-to-one mapping between the estimate
ĉ and the ground truth c over C × S × S, that is, c is block-
identifiable.

Proof. For (v1,v2) ∼ pv1,v2 , because of the matched joint distri-
bution, we have the following relations between the true variables
(c, s1, s2) and the estimated ones (ĉ, ŝ1, ŝ2):

v1 = g1(c, s1) = ĝ1(ĉ, ŝ1), (6)

v2 = g2(c, s2) = ĝ2(ĉ, ŝ2), (7)

(ĉ, ŝ1, ŝ2) = ĝ−1(v1,v2) = ĝ−1(g(c, s1, s2)) := h(c, s1, s2),
(8)

where we define the smooth and invertible function h :=
ĝ−1 ◦ g that transforms the true variables (c, s1, s2) to estimates
(ĉ, ŝ1, ŝ2).

Plugging Equation 8 into Equation 6 yields the following:

g1(c, s1) = ĝ1(hc,s1(c, s1, s2)).

For i ∈ {1, . . . , dv1} and (j ∈ {1, . . . , ds2}), taking partial
derivative of the i-th dimension of both sides w.r.t. s2,j :

0 =
∂g1,i(c, s1)

∂s2,j
=

∂ĝ1,i(hc,s1(c, s1, s2))

∂s2,j
.

The equation equals to zero because there is no s2,j in the left-hand
side of the equation. Expanding the derivative on the right-hand
side gives:∑

k∈{1,...,dc+ds1}

∂ĝ1,i
∂h(c,s1),k

·
∂h(c,s1),k

∂s2,j
(c, s1, s2) = 0 (9)

For (ĉ, ŝ1) ∈ C × S \ E1 where E1 denotes some subset with
zero measure, there are at least dc + ds1 values of i for which
vectors [∂ĝ1,i

∂h(c,s1),1
(ĉ, ŝ1), . . . ,

∂ĝ1,i
∂h(c,s1),dc+ds1

(ĉ, ŝ1)] are linearly

independent, which is equivalent to the non-singular Jacobian ma-
trix condition. Therefore, the (dc+ds1)×(dc+ds1) linear system
is invertible and the solution states that:

∂h(c,s1),k

∂s2,j
(c, s1, s2) = 0,

for any k ∈ {1, . . . , dc + ds1}, j ∈ {1, . . . , ds2}, and (ĉ, ŝ1) ∈
C×S \E1. Therefore, we have shown that hc,s1 , i.e. (ĉ, ŝ1), does
not depend on s2.

Applying the same reasoning to hc,s2 , we can obtain that hc,s2 ,
i.e. (ĉ, ŝ2) does not depend on s1 on C × S.

Thus, for (ĉ, ŝ1, ŝ2) ∈ C × S × S, we can observe that ĉ does
not depend on s1 and s2, that is, ĉ = hc(c).

Notice that in all procedures above, the roles of the
true quantities (c, s1, s2, g, g1, g2) and the estimated quantities
(ĉ, ŝ1, ŝ2, ĝ, ĝ1, ĝ2) are totally symmetric. Therefore, we can
switch the two sets of quantities and derive the relation: for
(c, s1, s2) ∈ (C × S × S), c does not depend on ŝ1 and ŝ2, that
is, c = h′

c(ĉ).
In sum, we have shown that on (C × S × S), there is a one-to-

one mapping between c and ĉ.

Proof. We invoke Theorem 3 and establish the connection be-
tween the MAE training and the estimation model in Theorem 3.
In particular, we show that under Assumption 2, any solution pro-
duced by the MAE objective satisfies the conditions in Theorem 3
and consequently is equipped with the identifiability guarantee.

We make the following assignments from the MAE configura-
tion to the estimation models in Theorem 3:

• v1 ← xm;

• v2 ← xmc ;

• ĝ1 ← Dm(·, ŝm);

• ĝ2 ← g̃mc , where Emc(·) = [g̃−1
mc(·)]1:dc .

We can observe that the minimizer of MAE satisfies the con-
ditions specified in Theorem 3. This is because for the optimizer
Emc of the MAE objective, we can always construct a g̃mc , which,
together with Dm, matches the joint distribution pxm,xmc , as stip-
ulated in Theorem 3. Thus, as shown in Theorem 3, there exists a
one-to-one mapping between the MAE estimate ĉ := Emc(xmc)
and the true variable c, which concludes our proof.

C. Experimental Setup
In this section, we provide the details of the experimen-

tal setups for our empirical results. Checkpoints and some
codes are in https://github.com/martinmamql/mae_
understand.

https://github.com/martinmamql/mae_understand
https://github.com/martinmamql/mae_understand

C.1. Masked Autoencoder

Masked Autoencoder (MAE) is an auto-encoding approach
based on Vision Transformers (ViT) [17]. It consists of five
steps: masking, encoding, unmasking, decoding, and reconstruc-
tion. First, an image is divided into non-overlapping patches.
Then MAE samples a subset of patches and discards the remain-
ing patches. MAE uses a hyper-parameter, masking ratio, to de-
termine the percentage of patches to discard. For instance, if the
masking ratio is 75%, 3

4
of the patches in an image will be dis-

carded, and only 1
4

of the patches will be fed into the encoder.
The sampling of patches follows a uniform distribution. Next, a
ViT encoder first embeds patches using a linear projection with
positional embeddings and then uses the processed embeddings to
feed into transformer blocks. For decoding, MAE first re-arranges
the encoded embeddings from the visible patches according to
their corresponding positions in the original image and then uses
a shared learned mask token to fill in the patches that are masked.
Essentially, this means the input of the decoder is a combination of
encoded visible patches and the mask tokens, where the positions
of the mask tokens are the masked patches in the original image.
The decoder is another lightweight ViT, and it processes the de-
coder input through transformer blocks. Lastly, the last layer of
the decoder linearly projects output patches to pixels, and the pixel
output is reshaped to form a reconstruction of the original image.
The objective function is the mean squared error between the re-
construction and the original image. MAE has thrived because of
its simple design and strong empirical performance.

In the main text, inspired by a follow-up work of MAE [28],
we study the effect of masking by decoupling the patch size for
masking images and the patch size hyperparameter in the ViT. Par-
ticularly, in the main text, we only vary the masking patch size and
fix the ViT patch size at 8. Nevertheless, the original MAE [22]
does not decouple the two patch sizes. Therefore, for the reference
of readers, in Appendix, we provide some analysis and results pro-
duced based on the patch size design from the original MAE [22],
where the masking patch size and the ViT patch size are equal,
and we study three patch sizes: {8, 16, 32}. The experimental
setup in [28] and the setup in [22] are interchangeable except for
whether the patch size for the Vision Transformer varies.

C.2. Pretraining and Linear Probing

For pretraining MAE under different masking ratios or patch
sizes, we leverage the Tensor Processing Unit (TPU) from Google
Cloud. We train separate MAE models for each (masking ratio,
patch size) pair, and each pretrained MAE corresponds to a unique
masking ratio and patch size. We train all MAEs for 800 epochs.
Training time varies, with the shortest (patch size = 32) taking 18
hours on a TPU v3-128 Pod, and the longest (patch size = 8) tak-
ing 40 hours on a TPU v3-128 pod. The architecture follows the
exact implementation from the original MAE paper [22], without
any hyper-parameter tuning except masking ratio and patch size,
which we study in this paper. Details of augmentation, initializa-
tion, and base learning rate scaling can be found in the Appendix
section of [22], all of which we follow.

After pretraining, we also follow the original MAE work to use
linear probing to evaluate the representation quality. After pre-
training, we remove the projection layers and add a supervised

learning classifier on frozen features of MAE encoders. The de-
coders are discarded during linear probing. Other details of linear
probing can be found in the Appendix section of [22]. We use the
same hyper-parameters of linear probing as in [22].

C.3. Reconstructing high-level or low-level repre-
sentations

To perform reconstruction, we use both the encoder and the
decoder from the pretrained MAEs. All samples from ImageNet-
1K are passed through the encoder without any masking and the
decoder reconstructs images in the original input space. Since no
masking is applied, no masking token is applied to the input of the
decoder. We use the reconstructed images and the original images
to perform evaluations of four metrics: SSIM, FSIM, MSE, and
PSNR. No training is performed, and the weights of the encoder
and the decoder are all frozen.

In Fig. 9, we show the reconstruction analysis using the origi-
nal patch size design in MAE. Similar to the result in the main text,
higher patch sizes produce image reconstructions capturing high-
level similarities better, while low patch sizes have reconstructions
better on low-level metrics.

C.4. Attention Analysis
We follow the attention heatmap visualization in DINO [10],

where the chosen token is the [CLS] token or an object-related
token. We visualize the self-attention module from the last block
of MAE encoder ViT. Brighter colors suggest larger attention
weights. For easier visualization, attentions that are below a
threshold of activation scores are not shown. We use the same
threshold as [10]. For the self-attention visualization on the
[CLS] token, we use an average of all heads in the last layer of
the encoder ViT. For the self-attention visualization of the object-
related token, we use the first head of the last layer of the encoder
ViT, because using the average attention over all heads will result
in a heatmap with much higher overall attention scores across pix-
els, making the visualization hard to interpret.

C.5. Linear separability
To illustrate the linear separability of different MAEs under

varied masking ratios or patch sizes, we sample ten random classes
from ImageNet, and then use each MAE encoder to process im-
ages in the 10 classes to produce embeddings. We then project
embeddings of all samples using PCA to a 50-dimension space
before t-SNE, as recommended by [56]. For t-SNE, we use a per-
plexity of 20.

In Fig. 10, we show the t-SNE plot using the original patch size
design in MAE. Similar to the main text, embeddings are more
separated in patch sizes 16 and 32 than 8, but differently, there are
no significant differences between 16 and 32. Larger patch sizes
generate more linearly separable embeddings in this case, although
the separability seems indistinguishable for sizes 16 and 32.

For the robustness evaluation, we evaluate different vari-
ants of ImageNet validation datasets: ImageNet-v2 (INV2) [52],
ImageNet-Adversarial (IN-A) [25], ImageNet-Rendition [4], and
ImageNet-Sketch (IN-S) [59]. We also include another object
classification dataset, ObjectNet (OJN) [4]. ImageNet-v2 con-
tains three new test sets with 10,000 new images each, sampled a

Figure 9. Reconstruction evaluation using the validation set without masking, based on two structural-level similarity metrics (SSIM and
FSIM) and two pixel-level metrics (PSNR and MSE). We plot negative MSE for easier visualization. Higher SSIM and FSIM indicate
high-level information is better captured, while higher PSNR and negative MSE indicates better low-level reconstruction. Here the patch
size refers to the patch size in the original MAE, where the masking patch size and the patch size of ViT are equal.

Figure 10. T-SNE embeddings of different MAE models under
varied masking ratios and patch sizes. We fix the masking ratio at
0.75 to change patch sizes. Each color represents one ImageNet
class. The patch size refers to the patch size in the original MAE,
where the masking patch size and the patch size of ViT are equal.

decade after the collection of the original ImageNet dataset, and is
independent of existing models to prevent overfitting. ImageNet-
Adversarial consists of natural images with adversarial filtration,
meaning samples that can be classified with spurious cues are
removed. Examples in ImageNet-A are harder to classify cor-
rectly and can cause mistakes across various models. ImageNet-
Rendition contains renditions of ImageNet classes, such as art,
cartoons, graffiti, and paintings. These examples share the same
high-level object labels as ImageNet examples but differ in style
and texture. ImageNet-Sketch contains black and white images of
ImageNet classes, also differing in color and texture compared to
original ImageNet samples. ObjectNet is a set of images captured
at unusual poses in cluttered, natural scenes, which can severely
degrade recognition performance.

Note that for evaluating these datasets, no training is per-
formed; we use the MAE encoders after linear probings, therefore
the checkpoints that are pretrained and linear-probed on ImageNet,
and evaluate the checkpoints on these validation datasets without
any parameter updates.

In Table 4, we show the robustness analysis using the original
patch size design in MAE. A moderate patch size 16 yields the
best robustness evaluation on IN-v2, OJN, IN-R, and IN-S. If we
follow the original MAE and do not decouple masking patch size
and ViT patch size, a medium patch size has stronger robustness
performances than extreme patch sizes.

C.6. Shape bias
The cue-conflict dataset was introduced by [19] to evaluate how

much deep learning models rely on shape information for predic-
tion, which reflects the model’s robustness to spurious correlation

mask ratio patch size IN1K IN-v2 OJN IN-R IN-A IN-S
0.75 8 62.57 49.17 13.44 19.42 3.73 10.73
0.75 16 67.41 54.23 18.24 25.20 3.76 15.51
0.75 32 55.51 42.35 13.46 18.70 1.89 9.48

Table 4. Accuracy (%) of linear probing and robustness evalu-
ation on ImageNet variants and ObjectNet. We linear probe MAE
via supervised training on IN1K, and then perform inference on
IN1K as well as other evaluation sets. We fix the masking ratio at
0.75 to change patch sizes. The patch size refers to the patch size
in the original MAE, where the masking patch size and the patch
size of ViT are equal.

mask ratio patch size APbox APmask

0.75 8 34.21 32.28
0.75 16 33.77 32.04
0.75 32 32.39 30.54

Table 5. COCO object detection and segmentation using a ViT
Mask R-CNN baseline. We fix the masking ratio at 0.75 to change
patch sizes. The patch size refers to the patch size in the original
MAE, where the masking patch size and the patch size of ViT are
equal.

like textures. This dataset consists of 1280 images that are syn-
thesized from 160 images of objects and 48 images of textures.
The shape accuracy is measured by the fraction of images that are
predicted correctly by their shape. We directly run the pretrained
MAE models with linear probes trained on ImageNet-1K on the
cue-conflict dataset to examine the representation resulting from
MAE pretraining, without any adaptation to the test dataset.

C.7. Transfer learning
We use the pretrained MAE ViT encoder as an FPN [42] back-

bone in Mask-RCNN [24], following [22]. To do so, [22] uses a
stack of pretrained transformer blocks in MAE to produce feature
maps at a single scale; for instance, patch size 16 will produce
stride 16 features. Then the features are equally divided, and up-
sampling or downsampling is applied to create features at differ-
ent scales. Lastly, the FPN is built on multi-scale features. Below
we include the transfer learning results of different patch sizes on
COCO object detection and segmentation [43]. Because different
patch sizes in ViT will influence the scale of feature maps in the
FPN, we enforce the same combinations of multi-scale features:
i.e., stride 4, 8, 16, and 32.

From Table 5, we show the transfer learning results of MAE
under different patch sizes. Patch size 8 performs the best, and
patch size 16 is better than 32. The reason for the better perfor-

mance at patch size 8 may be due to a smaller batch size used,
compared to patch size 16 and 32 (we can only fit batch size 1
for patch size 8 due to the increased number of tokens to pro-
cess because of a smaller patch size.) We use the same batch size
for 32 and 16, and the comparison between the two supports our
claim: an extreme masking scheme can hurt the model’s capac-
ity to capture high-level information, or in this case, the semantic
understanding of the scene.

	. Proof for Theorem 1
	. Identifiability proof
	. Experimental Setup
	. Masked Autoencoder
	. Pretraining and Linear Probing
	. Reconstructing high-level or low-level representations
	. Attention Analysis
	. Linear separability
	. Shape bias
	. Transfer learning

