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S1. The approximation of the Boltzmann dis-
tribution

Let us simplify the hardware term used in evidence lower
bound (ELBO) (8). We begin by writing the prior probabil-
ity (3) given the hardware constraints (12) in terms of bit
operations (BOPs),

log pk,b = log
e−ηbωk bxk MACs(k)∑
b∈B e−ηbωk bxk MACs(k)

= −ηbωk bxk MACs(k)− log
∑
b∈B

e−ηbωk bxk MACs(k), (S1)

where B = Bω × Bx is a Cartesian product of the avail-
able bit width options for weights and activations, and the ∗
symbol is used as a wildcard for {ω, x}.

Let us rewrite (S1) in terms of v = ηMACs(k). Such
a notation is convenient because, in practice, v takes small
values, usually in the range of [10−5, 10−2]. This allows us
to express (S1) as a Taylor series around v = 0,

log pk,b = −vbωk bxk − log
∑
b∈B

e−vbωk bxk (S2)

log pk,b|v=0 = − log |Bω||Bx| (S3)

d

dv
log pk,b

∣∣∣∣
v=0

= −bωk bxk +

∑
b∈B bωk b

x
ke

−vbωk bxk∑
b∈B e−vbωk bxk

∣∣∣∣∣
v=0

= −bωk bxk + b̄ω b̄x, (S4)

where b̄∗ = |B∗|−1
∑

b∗∈B∗ b∗ is the average bit widths of
weights and activations.

Using (S3) and (S4) in a Taylor expansion of (S2), we
get

log pk,b ≈ − log |Bω||Bx|+ (b̄ω b̄x − bωk b
x
k)ηMACs(k)

= −ηMACs(k)bωk b
x
k + ηMACs(k)b̄ω b̄x − log |Bω||Bx|.

(S5)
The last two terms do not depend on the bit width allocation
and can be ignored during optimization. Therefore, we can

derive (13) as

F(ω, π) = Ez∼qπ(z) [log pω(D|z)]

+

K∑
k=1

∑
b∈B

πk,b log pk,b +H(π) (S6)

= Ez∼qπ(z) [log pω(D|z)]

− η

K∑
k=1

MACs(k)
∑
b∈B

πk,bb
ω
k b

x
k +H(π) (S7)

= Ez∼qπ(z) [log pω(D|z)]

− η

K∑
k=1

b̃ωk b̃
x
k MACs(k) +H(π). (S8)

Note that a similar – but additive w.r.t. b̃ω and b̃x – hardware
term can be derived for random-access memory (RAM)
constraints defined in (S14).

Finally, in Figure S1, we compare the performance of the
EdMIPS loss [3] with original hardware constraints formu-
lation and those defined by the Boltzmann distribution (3).
As we can see, all studied losses perform similarly. This
supports our theoretical approximation of the Boltzmann
distribution provided here.

S2. One-Shot MPS algorithm

The proposed One-Shot MPS method is summarized in
Algorithm S1. Optional actions can be used for selecting
Pareto-optimal architectures w.r.t. the searching dataset. We
used optional actions for removing models which rest inside
Pareto fronts in Figure 5.

S3. The additional details of the experiments

S3.1. Quantizers

S3.1.1 General notes

We use a uniform quantization grid. For training the quan-
tized networks, we follow the common approach of simulat-
ing the quantizing operations. Please, refer to the LSQ [6]
article for a practical description of the simulation approach.
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Figure S1. The ResNet-18 Pareto front obtained for EdMIPS with
the original hardware constraints formulation [3] (“EdMIPS”) and
those defined by the Boltzmann distribution (3) (“EdMIPS-BM”).

Algorithm S1 One-Shot MPS

1: Inputs: Pre-trained FP32 model Mω , range of
hardware penalties [η0, η1], searching dataset D =
{Dtrain,Dval}

2: Outputs: Found bit width options B
3: Transform Mω to a one-shot supernet Sω,θ as shown in

Figure 3
4: while one-shot model is not converged do
5: Sample x ∼ Dtrain and η ∼ LogUniform(η0, η1)
6: Update Sω,θ using a grad step on {x, η} by mini-

mizing loss (15)
7: end while
8: for i = 0, I do ▷ Linear (or possibly nonlinear) sweep
9: η ← η0 + i(η1 − η0)/I

10: Select bit width bη ← argmax fθ(η)
11: Store B ← B ∪ bη
12: (optional) Evaluate child model performance

Sω,θ(bη) on Dval

13: (optional) Compute hardware metrics for bη
14: end for
15: (optional) Select Pareto front architectures using data

from steps 12-13
16: (optional) Fine-tune the selected architectures

S3.1.2 LSQ and PACT

We use the original LSQ [6] and PACT [4] quantizers.

S3.1.3 Lloyd and Half-Wave Gaussian Quantizer

The Lloyd quantizer [9, 10] uses fixed steps obtained by
the Lloyd’s algorithm assuming normally distributed ten-
sors. Such an assumption is reasonable for weights [3].
It is also reasonable for activations that follow Batch Nor-
malization (BN) layers. In the case of positive activations

due to ReLU non-linearity, we employ the Half-Wave Gaus-
sian Quantizer (HWGQ) [2] with steps also computed using
the Lloyd’s algorithm. For simplicity, we mention only the
Lloyd quantizer in the experiments, meaning that HWGQ
is used for positive activations. The Lloyd quantizer has no
trainable variables, which makes it easy to set up and use.
For this reason, we use it to compare DNAS, EdMIPS, and
One-Shot searchers.

The Lloyd quantizer equation for weight tensor ω̂ ∈ R is

ω̂ =

⌊
clip

(
ω

std(ω)sω
,−QN , QP

)⌉
std(ω)sω, (S9)

where integer positive and negative clip values are QN =
2b−1 and QP = 2b−1 − 1, respectively. The step size sω is
precomputed as a mean distance of the quantized bin cen-
ters. The bin centers are obtained by minimizing the ex-
pected distance between the FP32 weights ω ∈ R and their
quantized counterpart ω̂ assuming that ω ∼ N (0, 1). We
obtain the following steps for each bit width

s2 = 1.0069, s4 = 0.3644, s8 = 0.0365. (S10)

Channel-wise standardization for weight quantizers is
applied for SRResNet and MobileNet-v2 because it has
been shown that the channels of each kernel have very dif-
ferent ranges of values [8, 16]. Thus, for each kernel in
SRResNet and MobileNet-v2, we calculate std(ω) in (S9)
along its channel dimension.

The quantized input tensor x̂ ∈ R is calculated as

x̂ =

⌊
clip

(
x

sx
,−QN , QP

)⌉
sx, (S11)

where x ∈ R, QN , and QP are defined as in (S9).
We apply HWGQ when the input tensor x ∈ R+ is pos-

itive, e.g. it arrives after the ReLU activation function. In
such a case, we use QN = 0, QP = 2b − 1, and steps

s2 = 0.6356, s4 = 0.2131, s8 = 0.0203. (S12)

S3.1.4 Trainable Lloyd

As for the trainable step case, we use a Trainable Lloyd
quantizer which is a regular Lloyd quantizer with a train-
able step. We use the values defined in (S10) and (S12) for
initializing the steps. The steps are fine-tuned using the op-
timizers described in Table S1. In our experience, a Train-
able Lloyd quantizer for mixed-precision networks is more
stable than LSQ due to its initialization, which does not de-
pend on a chosen batch of data or outliers.

For SRResNet and MobileNet-v2, we also use channel-
wise standardization for weight quantizers, i.e. ω̂ =
ω/ std(ω) [8, 16]. Note that the standardization is a
hardware-friendly operation that can be fused with quan-
tization steps at inference.



S3.2. Hardware resource equations

The BOPs number for a model is given by

BOPs =
∑
k

MACs(k) · bωk · bxk, (S13)

where MACs(k) gives the number of multiply-accumulate
operations in layer k, bω ∈ Bω and bx ∈ Bx are the bit
widths of weights and inputs, respectively.

The total RAM used at inference is defined as

RAM = I +
∑
k

Kk · bωk /8 +
∑
k

Fk · bxk/8, (S14)

where I is an input image size, Kk is the number of train-
able variables per layer, and Fk is a feature size excluding a
batch dimension. We sum up RAM over all network layers,
assuming that each non-quantized feature is 32 bit. Note
that both BOPs and RAM are differentiable w.r.t. bit width.

S3.3. Baseline algorithms

All implementations are done in Tensorflow framework.
We compare the One-Shot methods with our implementa-
tion of EdMIPS and DNAS. The EdMIPS implementation
strictly follows the original paper. The DNAS implementa-
tion is made comparable to EdMIPS by (I) using the same
additive loss and Lloyd quantizer, and (II) selecting and
fine-tuning a single architecture after searching. We also
compare One-Shot results with the Bayesian Bits searcher
applied to ResNet-18 and the fixed-precision FQSR [12]
method applied to SRResNet. The results of these methods
are taken from the corresponding articles. To the best of our
knowledge, FQSR and One-Shot MPS are the only works
that quantize all inputs and weights in super-resolution (SR)
networks. Finally, we compare our method to HAQ [13] and
GMPQ [14]. For a fair comparison, we reproduced both
methods using Tensorflow framework. We carefully com-
pared our reproduced results with those obtained using the
original code available online, and did our best in hyperpa-
rameter tuning.

For reference, we plot the performance of fixed bit width
architectures quantized by Lloyd, LSQ, and PACT. These
algorithms always quantize the input of the first layer in 8
bits.

S3.4. Training hyperparameters

The hyperparameters used for the bit width searching
and child model fine-tuning are summarized in Table S1.
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Figure S2. The ResNet-18 Pareto front obtained for EdMIPS and
VIMPS (8) loss functions.

S4. Extra results
S4.1. Variational Inference Mixed-Precision Search

(VIMPS)

Following the comments during the reviewing process,
we decided to include the comparison plot of EdMIPS and
VIMPS (8) losses. The difference between the two losses is
summarized as follows:

1. EdMIPS uses approximation (11), while VIMPS uses
approximation (9),

2. EdMIPS uses additive hardware constraints, while
VIMPS uses Boltzmann form (3),

3. EdMIPS does not use entropy, while VIMPS uses en-
tropy H(π).

The comparison is done for the ResNet-18 model only. Re-
sults are presented in Figure S2 and Table S2. Given that the
accuracy on ResNet-18 has a confidence interval of about
0.1%, VIMPS looks slightly better. However, more in-
depth study is required.

S4.2. Tabular results

For easy comparison in future works, we summarize our
results from Figure 5 in Tables S3, S4, S5, S6, S7, S8, and
S9.

S4.3. Extra correlation plots

Figure S3 shows correlation plots for ESPCN,
SRResNet, and MobileNet-v2. From the plots, we
see that child models found by One-Shot MPS have target
metrics closest to those of standalone models, except for
MobileNet-v2. This is explained by the proxy dataset used
during the searching stage. The dataset is simpler than the
full ImageNet dataset due to which child models attain
higher accuracies compared to standalone models.



Table S1. Training hyperparameters, and training time measured on a single (ESPCN and SRResNet) and a pair (ResNet-18 and
MobileNet-v2) of Nvidia Tesla V100 GPU. SGD optimizer with 10−4 (4 · 10−5) weight decay and momentum 0.9 is used in runs marked
with *(**). Adam is used in all other runs. Step optimizer is not applied for Lloyd quantizer at fine-tuning. The regularization η is applied
to RAM measured in MB (for ESPCN and SRResNet) and bit operations measured in TeraBOPs (for ResNet-18 and MobileNet-v2).

Model Algorithm Regular-
izer η

Initial learning rates for:
Epochs Single model

training timeweights ω steps architecture params θ

E
SP

C
N

One-Shot MPS [0.001, 50] 0.001 0.005 50 30min

EdMIPS
[0, 5] 0.0001 0.001 25 10minDNAS

Fine-tune 0.0001 5 · 10−6 100 30min

SR
R

es
N

et One-Shot MPS [10−6, 1] 0.0001 0.001 50 5 h

EdMIPS [0, 0.05] 0.001 0.001 25 1 h

DNAS [0, 0.05] 0.0001 0.01 25 45min

Fine-tune 0.001 0.0001 100 2 h

R
es

N
et

-1
8 One-Shot MPS [0.01, 20] 0.1* 0.0005 20 3.4 h

EdMIPS [0, 20] 0.01* 0.001 25 1.7 h

DNAS [0, 20] 0.01* 0.001 25 3.4 h

Fine-tune 0.01* 0.0001* 30 11.0 h

M
ob

ile
N

et
-v

2 One-Shot MPS [0.0003, 300] 0.01** 0.001 20 11.0 h

EdMIPS [0, 30] 0.01** 0.001 25 3.8 h

DNAS [0, 30] 0.01** 0.001 25 6.7 h

Fine-tune 0.01** 0.0001* 30 29.0 h

S4.4. The ESPCN and SRResNet quantization re-
sults on Set5

In Figure S4, the One-Shot MPS Pareto front on Set5
shows a similar behavior as for Set14 in Figure 5. One-
Shot MPS with a Lloyd quantizer outperforms EdMIPS and
DNAS searchers. The Trainable Lloyd quantizer improves
the results even further. Note that the architectures found
by the proposed method outperform 4-bit FQSR by a large
margin.

S4.5. The SRResNet qualitative results

The existing SR metrics do not always reflect human
perception of visual quality [5]. For this reason, we
compare the visual quality of images produced by FP32
SRResNet and the mixed-precision models at roughly 35%
of the total RAM reduction. All searching algorithms
(DNAS, EdMIPS, One-Shot MPS) find a mixed-precision
model that achieves a similar visual quality compared to
the FP32 SRResNet model. All SR Set5 and Set14 im-
ages obtained by the original FP32 SRResNet as well as
by the searchers can be found in the folder named “SR-
ResNet Set5 set14 resulting images”. We hand-picked two
images on which we could observe the visual quality differ-
ence. Figure S5 shows the cutout regions. The proposed
One-Shot MPS produces more detailed textures at a higher
compression rate compared to DNAS and EdMIPS. Also,

note that all mixed-precision methods do not change the
color temperature or hue.

S4.6. Bit width model probabilities

S4.6.1 ESPCN bit width model probabilities

Figures S6 and S7 show the input and weight probabilities
depending on a logarithmic hardware penalty, respectively.
As expected, the 8-bit precision (green line) is selected for
all quantizers at the lowest penalty. For larger penalties, we
can see that precision gradually changes from 8 bit, to 4, and
then to 2 bits. One exception is the “conv2d” weight quan-
tizer where 4-bit was never selected. We attribute this to
the choice of the bit width model, which is a 1-layer model
for ESPCN. We hypothesize that using a more complex bit
width model (2-layer model as in other experiments) may
fix this issue, cf . Figure 7 (left).

S4.6.2 SRResNet bit width model probabilities

In Figures S8 and S9, we show input and weight prob-
abilities learned by the bit width model in each matrix
multiplication layer of the SRResNet network. As with
ESPCN in the previous section, we see that 8-bit preci-
sion is selected for the lowest values of the regulariza-
tion parameter η, and then it changes to 4 and 2 bits
for higher η. The red vertical line slices the plots at
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Figure S3. The plots visualize the correlation between the child
and standalone models in terms of PSNR (ESPCN and SRResNet)
and top-1 accuracy (MobileNet-v2). Brighter colors depict models
of higher BOPs or RAM. For MobileNet-v2, the standalone model
is trained and evaluated on a full ImageNet, while the child model
is taken from a One-Shot supernet that is trained and evaluated on
a proxy ImageNet. Note the difference in axis ranges.

η = 0.0173 which corresponds to the One-Shot MPS
result in Figure S5. The input and weight bit widths
at this intersection are [8, 8, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 8, 4, 8]
and [8, 4, 4, 2, 4, 4, 4, 4, 2, 4, 2, 4, 8, 4, 8], respectively.

We can also hypothesize why it is challenging to quan-
tize SRResNet layers. The structure of SRResNet, pre-
sented in [7] in Figure 4, contains a long-distant skip con-
nection between the low-level feature extractor and the up-
sampler parts. The residual blocks, shortcut by the skip
connection, have names from “conv2d 1” to “conv2d 11”
in Figures S8 and S9. The shortcut is responsible for prop-
agating the low-resolution feature which is essential for a
good-quality reconstruction by the up-sampler. Therefore,
it is preferable to keep the higher precision for the feature
extractor (layer “conv2d”) and the up-sampler (layers from
“conv2d 12” to “conv2d 14”). One-Shot MPS finds 8 or 4
bit widths for these layers. On the other hand, the layers
from “conv2d 1” to “conv2d 11” learn the high-resolution
details. As we can see, they can be quantized to 2 bits with-
out much degradation of PSNR, cf . Figure 5 and Figure S4.
We think that such a precision contrast poses a challenge

when the network is quantized in the same number of bits
except 8.

S4.6.3 ResNet-18 bit width model probabilities

In Figures S10 and S11, we show input and weight prob-
abilities learned by the bit width model for the ResNet-18
network. A similar picture to ESPCN and SRResNet is ob-
served.
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Figure S5. The SRResNet qualitative results. The cutouts of a baboon from Set14 [17] (first two rows) and a baby from Set5 [1] (last row).
Each column shows images produced by the same model specified below the images.
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Figure S6. ESPCN bit width model input probabilities per layer.
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Figure S8. SRResNet bit width model input probabilities per layer.
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Figure S9. SRResNet bit width model weight probabilities per layer.
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Figure S10. ResNet-18 bit width model input probabilities per layer.
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Figure S11. ResNet-18 bit width model weight probabilities per layer.



Table S2. Tabular results used for plotting Figure S2.

Method
BOPs
×109

Top-1
accuracy, %

FP 1857.6 70.0
EdMIPS (Lloyd) 13.8 66.7
EdMIPS (Lloyd) 15.2 66.9
EdMIPS (Lloyd) 23.2 68.4
EdMIPS (Lloyd) 25.6 68.7
EdMIPS (Lloyd) 37.1 69.3
EdMIPS (Lloyd) 46.7 69.4
EdMIPS (Lloyd) 53.1 69.5
EdMIPS (Lloyd) 73.6 69.7
EdMIPS (Lloyd) 112.4 69.9
EdMIPS (Lloyd) 116.1 70.0
VIMPS Eq. 8 (Lloyd) 12.2 65.3
VIMPS Eq. 8 (Lloyd) 15.2 67.1
VIMPS Eq. 8 (Lloyd) 23.2 68.5
VIMPS Eq. 8 (Lloyd) 33.3 69.1
VIMPS Eq. 8 (Lloyd) 44.4 69.6
VIMPS Eq. 8 (Lloyd) 58.6 69.8
VIMPS Eq. 8 (Lloyd) 71.7 69.8
VIMPS Eq. 8 (Lloyd) 97.6 70.0

Table S3. Results obtained on ESPCN used for creating Figure 5a.

Method RAM, MB
Set14

PSNR, dB
FP 1.28 27.26
Lloyd w8a8 0.75 27.24
Lloyd w4a4 0.69 26.86
Lloyd w2a2 0.67 24.94
LSQ w8a8 0.75 27.26
LSQ w4a4 0.69 26.84
LSQ w2a2 0.67 25.71
PACT w8a8 0.75 27.19
PACT w4a4 0.69 25.99
EdMIPS (Lloyd) 0.62 22.61
EdMIPS (Lloyd) 0.65 25.93
EdMIPS (Lloyd) 0.66 26.43
EdMIPS (Lloyd) 0.68 26.54
EdMIPS (Lloyd) 0.72 27.06
EdMIPS (Lloyd) 0.74 27.20
EdMIPS (Lloyd) 0.75 27.24
DNAS (Lloyd) 0.62 22.92
DNAS (Lloyd) 0.65 26.03
DNAS (Lloyd) 0.67 26.41
DNAS (Lloyd) 0.68 26.49
DNAS (Lloyd) 0.69 26.56
DNAS (Lloyd) 0.73 27.12
DNAS (Lloyd) 0.74 27.20
DNAS (Lloyd) 0.75 27.24
One-Shot (Lloyd) 0.62 22.45
One-Shot (Lloyd) 0.63 24.98
One-Shot (Lloyd) 0.64 25.49
One-Shot (Lloyd) 0.64 25.74
One-Shot (Lloyd) 0.65 25.94
One-Shot (Lloyd) 0.66 26.43
One-Shot (Lloyd) 0.67 26.50
One-Shot (Lloyd) 0.70 26.93
One-Shot (Lloyd) 0.72 27.06
One-Shot (Lloyd) 0.74 27.20
One-Shot (Lloyd) 0.75 27.24
One-Shot (Trainable Lloyd) 0.62 22.82
One-Shot (Trainable Lloyd) 0.63 25.48
One-Shot (Trainable Lloyd) 0.64 25.60
One-Shot (Trainable Lloyd) 0.64 25.83
One-Shot (Trainable Lloyd) 0.65 26.05
One-Shot (Trainable Lloyd) 0.66 26.49
One-Shot (Trainable Lloyd) 0.67 26.58
One-Shot (Trainable Lloyd) 0.70 27.03
One-Shot (Trainable Lloyd) 0.72 27.13
One-Shot (Trainable Lloyd) 0.74 27.24
One-Shot (Trainable Lloyd) 0.75 27.25



Table S4. Conventional method’s results obtained on SRResNet
used for creating Figure 5b.

Method RAM, MB
Set14

PSNR, dB
FP 26.75 28.26
Lloyd w8a8 18.52 28.23
Lloyd w4a4 17.18 27.42
LSQ w8a8 18.52 28.25
LSQ w4a4 17.18 27.88
LSQ w2a2 16.51 26.80
PACT w8a8 18.52 27.98
PACT w4a4 17.18 27.64
PACT w2a2 16.51 26.69
FQSR w8a8 18.52 28.56
FQSR w4a4 17.18 28.05
EdMIPS (Lloyd) 16.53 27.11
EdMIPS (Lloyd) 16.59 27.14
EdMIPS (Lloyd) 16.68 27.75
EdMIPS (Lloyd) 17.48 28.15
EdMIPS (Lloyd) 17.57 28.16
EdMIPS (Lloyd) 18.09 28.22
EdMIPS (Lloyd) 18.47 28.24
EdMIPS (Lloyd) 18.52 28.25
DNAS (Lloyd) 16.51 26.86
DNAS (Lloyd) 16.64 27.63
DNAS (Lloyd) 16.78 27.72
DNAS (Lloyd) 17.55 28.15
DNAS (Lloyd) 17.59 28.16
DNAS (Lloyd) 17.88 28.20
DNAS (Lloyd) 18.15 28.22
DNAS (Lloyd) 18.36 28.24
DNAS (Lloyd) 18.48 28.25

Table S5. One-Shot MPS results obtained on SRResNet used for
creating Figure 5b.

Method RAM, MB
Set14

PSNR, dB
One-Shot (Lloyd) 16.67 27.18
One-Shot (Lloyd) 16.71 27.81
One-Shot (Lloyd) 16.83 27.88
One-Shot (Lloyd) 17.08 27.95
One-Shot (Lloyd) 17.09 27.96
One-Shot (Lloyd) 17.11 27.98
One-Shot (Lloyd) 17.12 28.02
One-Shot (Lloyd) 17.14 28.03
One-Shot (Lloyd) 17.28 28.09
One-Shot (Lloyd) 17.35 28.11
One-Shot (Lloyd) 17.44 28.14
One-Shot (Lloyd) 17.98 28.21
One-Shot (Lloyd) 18.04 28.21
One-Shot (Lloyd) 18.06 28.21
One-Shot (Lloyd) 18.25 28.22
One-Shot (Lloyd) 18.36 28.24
One-Shot (Trainable Lloyd) 16.67 27.31
One-Shot (Trainable Lloyd) 16.71 27.90
One-Shot (Trainable Lloyd) 16.83 27.97
One-Shot (Trainable Lloyd) 17.08 28.05
One-Shot (Trainable Lloyd) 17.11 28.06
One-Shot (Trainable Lloyd) 17.14 28.10
One-Shot (Trainable Lloyd) 17.28 28.15
One-Shot (Trainable Lloyd) 17.31 28.16
One-Shot (Trainable Lloyd) 17.35 28.18
One-Shot (Trainable Lloyd) 17.98 28.23
One-Shot (Trainable Lloyd) 18.04 28.23
One-Shot (Trainable Lloyd) 18.25 28.25
One-Shot (Trainable Lloyd) 18.36 28.27
One-Shot (Trainable Lloyd) 18.52 28.27



Table S6. Conventional method’s results obtained on ResNet-18
used for creating Figure 5c.

Method
BOPs
×109

Top-1
accuracy, %

FP 1857.6 70.0
Lloyd w8a8 116.1 70.0
Lloyd w4a4 30.9 69.0
LSQ w8a8 116.1 70.0
LSQ w4a4 30.9 68.9
PACT w8a8 116.1 69.3
PACT w4a4 30.9 68.5
EdMIPS (Lloyd) 13.8 66.7
EdMIPS (Lloyd) 15.2 66.9
EdMIPS (Lloyd) 23.2 68.4
EdMIPS (Lloyd) 25.6 68.7
EdMIPS (Lloyd) 37.1 69.3
EdMIPS (Lloyd) 46.7 69.4
EdMIPS (Lloyd) 53.1 69.5
EdMIPS (Lloyd) 73.6 69.7
EdMIPS (Lloyd) 112.4 69.9
EdMIPS (Lloyd) 116.1 70.0
DNAS (Lloyd) 19.4 67.8
DNAS (Lloyd) 24.9 68.6
DNAS (Lloyd) 27.2 68.9
DNAS (Lloyd) 30.4 69.1
DNAS (Lloyd) 36.5 69.2
DNAS (Lloyd) 60.5 69.7
DNAS (Lloyd) 112.4 70.1
Bayesian Bits (PACT) 18.9 67.1
Bayesian Bits (PACT) 26.7 68.2
Bayesian Bits (PACT) 33.4 69.2
Bayesian Bits (PACT) 39.2 69.6
Bayesian Bits (PACT) 46.6 69.9
HAQ (Lloyd) 22.2 67.6
HAQ (Lloyd) 36.6 69.1
HAQ (Lloyd) 74.9 69.6
HAQ (Lloyd) 81.9 69.8
GMPQ (Lloyd) 21.9 66.5
GMPQ (Lloyd) 33.2 68.1
GMPQ (Lloyd) 42.8 68.4
GMPQ (Lloyd) 101.1 69.6
GMPQ (Lloyd) 116.1 70

Table S7. One-Shot MPS results obtained on ResNet-18 used for
creating Figure 5c.

Method
BOPs
×109

Top-1
accuracy, %

One-Shot (Lloyd) 15.2 66.1
One-Shot (Lloyd) 15.7 66.7
One-Shot (Lloyd) 17.1 66.8
One-Shot (Lloyd) 17.6 67.0
One-Shot (Lloyd) 19.5 67.4
One-Shot (Lloyd) 22.7 68.2
One-Shot (Lloyd) 30.2 69.2
One-Shot (Lloyd) 34.8 69.3
One-Shot (Lloyd) 53.0 69.6
One-Shot (Lloyd) 62.5 69.7
One-Shot (Lloyd) 73.6 69.8
One-Shot (Trainable Lloyd) 15.2 66.7
One-Shot (Trainable Lloyd) 15.7 67.1
One-Shot (Trainable Lloyd) 17.1 67.4
One-Shot (Trainable Lloyd) 17.6 67.5
One-Shot (Trainable Lloyd) 19.5 67.7
One-Shot (Trainable Lloyd) 22.7 68.4
One-Shot (Trainable Lloyd) 30.2 69.2
One-Shot (Trainable Lloyd) 34.8 69.3
One-Shot (Trainable Lloyd) 53.0 69.8
One-Shot (Trainable Lloyd) 56.9 69.9
One-Shot (Trainable Lloyd) 62.5 69.9



Table S8. Conventional method’s results obtained on
MobileNet-v2 used for creating Figure 5d. Note that Bayesian
Bits numbers were taken from Figure 2b of the arXiv version
of [11].

Method
BOPs
×109

Top-1
accuracy, %

FP 308.0 72.2
Lloyd w8a8 19.2 71.7
Lloyd w4a4 5.3 68.2
LSQ w8a8 19.2 71.7
LSQ w4a4 5.3 68.3
PACT w8a8 19.2 70.2
PACT w4a4 5.3 67.7
EdMIPS (Lloyd) 2.3 63.7
EdMIPS (Lloyd) 3.7 67.7
EdMIPS (Lloyd) 7.5 71.0
EdMIPS (Lloyd) 8.4 71.1
EdMIPS (Lloyd) 9.4 71.3
EdMIPS (Lloyd) 11.1 71.5
EdMIPS (Lloyd) 16.5 71.8
DNAS (Lloyd) 2.8 66.4
DNAS (Lloyd) 4.6 69.3
DNAS (Lloyd) 7.9 71.0
DNAS (Lloyd) 9.4 71.3
DNAS (Lloyd) 10.7 71.6
DNAS (Lloyd) 13.0 71.7
DNAS (Lloyd) 17.6 71.8
DNAS (Lloyd) 19.2 71.8
Bayesian Bits (PACT) 3.4 63.2
Bayesian Bits (PACT) 4.0 66.3
Bayesian Bits (PACT) 4.8 67.7
Bayesian Bits (PACT) 5.9 69.0
Bayesian Bits (PACT) 7.1 69.5
Bayesian Bits (PACT) 10.5 70.8
Bayesian Bits (PACT) 14.6 71.8
Bayesian Bits (PACT) 19.2 72.0

Table S9. One-Shot MPS results obtained on MobileNet-v2 used
for creating Figure 5d.

Method
BOPs
×109

Top-1
accuracy, %

One-Shot (Lloyd) 2.8 63.7
One-Shot (Lloyd) 4.5 67.7
One-Shot (Lloyd) 6.0 69.9
One-Shot (Lloyd) 7.5 70.4
One-Shot (Lloyd) 8.3 70.6
One-Shot (Lloyd) 10.2 71.1
One-Shot (Lloyd) 11.7 71.5
One-Shot (Lloyd) 13.6 71.7
One-Shot (Lloyd) 16.7 71.8
One-Shot (Trainable Lloyd) 2.8 66.9
One-Shot (Trainable Lloyd) 4.5 69.1
One-Shot (Trainable Lloyd) 6.0 70.8
One-Shot (Trainable Lloyd) 7.5 71.1
One-Shot (Trainable Lloyd) 8.3 71.3
One-Shot (Trainable Lloyd) 10.2 71.5
One-Shot (Trainable Lloyd) 11.7 71.7
One-Shot (Trainable Lloyd) 13.6 71.8
One-Shot (Trainable Lloyd) 16.7 72.0
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