
Table 4. Dataset Nutrition Label for the StarCraftImage dataset.

Motivation

Collection
Process

Possible Uses

Availability

Metadata

Dataset
Composition

StarCraftHyper StarCraftCIFAR10 StarCraftMNIST

Description A 340x64x64 px hyperspectral image
which has the most information of the
three representations. Specifically, there
is a channel for each unit type as well as
creep and visibility, all collected for each
player. Additionally there are channels
which contain map info such as map
height, placement grid, and unit pathing
grids. Additionally, each image is paired
with corresponding metadata.

A 32x32 RGB image dataset which was
synthesized from the StarCraftHyper
dataset such that the Player1
information is embedded into the Blue
channel, Player2 to the Red channel,
and Neutral information to the Green
channel. Each RGB image comes with
a corresponding label from one of 10
classes. This was done so it exactly
matches the format of the CIFAR10
dataset.

A 28x28 Grayscale image dataset which was
synthesized from the StarCraftCIFAR10 dataset such
that the Player1 information is pushed into the range
of [0.55, 1] px values, Player2 to the [0.0, 0.45] px
values, and Neutral information to the range of
[0.48, 0.52], and overlaid with decreasing
precedence of P1, P2, N. Each grayscale image
comes with a corresponding label from one of 10
classes. This was done so it exactly matches the
format of the MNIST dataset.

How to access After downloading the dataset, one can
use the StracraftImage dataset class
from the code repo.
E.g., for accessing training data:
sc2_train	=	StarCraftImage(data_root,	
subdir,	train=True)	

This can be used similar to CIFAR10 via
unpickling the compressed
StarCraftCIFAR10.tar.gz file. Or, the
whole StarCraftImage dataset can be
loaded in RGB format using the
StarCraftCIFAR10 python class.

This can be used similar to MNIST via uncompressing
the StarCraftMNIST.gz file. Or, the whole
StarCraftImage dataset can be loaded in grayscale
format using the StarCraftMNIST python class.

Data structure If in a sparse format: sparse matrix with
shape 340x64x64
If in a dense format: dense matrix with
shape Nx64x64 where N is the max # of
units at one location in a batch

Tuple with (3 x 32 x 32 numpy matrix
(aka, RGB image), integer label
between 0-9) -- matching the exact
format of CIFAR10

Tuple with (28 x 28 numpy matrix (aka, grayscale
image), integer label between 0-9) -- matching the
exact format of MNIST

Number of
Samples

3,607,787 images 50K training images, 10K test images 60K training images, 10K test images

Recommended
Data Splits

Depends on task, see Metadata
Description, Splitting dataset in
corresponding paper.

Already split along into 10 balanced
classes based off of (map_name,
is_from_begining_of_game). See
"Splitting dataset to k Classes" in paper
for details.

Already split along into 10 balanced classes based off
of (map_name, is_from_begining_of_game). See
"Splitting dataset to k Classes" in paper for details.

Noise levels No noise, but noise can be added as a
preprocessing step (see "Simulated Data
Corruption Models") in paper. However,
if multiple units of the same type cross
the same location within a window, only
the most recent crossing will be
recorded.

In addition to the StarCraftHyper noise,
the unit type ID information is
removed from this representation.

In addition to the StarCraftHyper noise, the unit type
ID information is removed from this representation.

Contains
Confidential/
Person
Identifiable
Data?

None None None

The dataset comprises of three main formats: StarCraftHyper, StarCraftCIFAR10, and StarCraftMNIST

Each window in the StarCraftImage dataset is paired with relevant metadata collected during the extraction process.
The metadata for each window consists of 52 entries which belong to one of three main subgroups: dynamic metadata (which is
information that is specific to each window), static metadata (which is information that is specific to each replay, but does not change
across windows within a replay), and computed metadata (which is information added by a user e.g., a label for that window for a
classification task). For details please seen "Metadata Description" subsection in the Appendix.

StarCraftImage
Existing multi-agent spatial reasoning datasets have focused on hyper-realism, leading to large image/video sizes which are expensive
to prototype on. Therefore, the ML community lacks an easy-to-use, yet complex behaviored, dataset for prototyping new spatial
reasoning algorithms. To fill this gap, we construct a StarCraftImage, a dataset based on StarCraft II replays that has intelligent human
behaviors, while being as easy to use as MNIST and CIFAR10 and still enabling complex spatial reasoning tasks.
We construct this dataset based on 60K StarCraft II replays (taken from Replay Pack 3.16.1 - Pack 1), and use PySC2 to create 3.6
million images which summarize a window of 255 game states from the replays. We additionally collect all relevant metadata such as
game outcome and player races. Each window is represented as an image and processed with standard computer vision tools.
Since our dataset contains diverse, interesting, and intelligent (even adversarial) behaviors, and thus, it should provide a relevant
simple benchmark for rapid prototyping of multi-agent spatial reasoning tasks and algorithms before trying on realistic data. For
example, we map common spatial reasoning tasks to event prediction (i.e., game outcome and StarCraft race prediction), target
identification (i.e., determining unit type from only knowing unit locations), and missing data imputation using both corruption models
and the fog-of-war from the game engine.
The StarCraftImage dataset is available for download at https://starcraftdata.davidinouye.com/ and available under a permissive CC BY
4.0 license. The code to recreate (or extend) the dataset extraction and processing, as well as code to load the data, rerun benchmarks,
and recreate demos is maintained on GitHub with an MIT license.

A. Dataset Availability, Licensing, and Man-
agement

The StarCraftImage dataset is available for download
at https://starcraftdata.davidinouye.com/ which contains the
full extracted data from the 3.6 million windows, the
metadata for all windows, the StarCraftMNIST train/test
datasets, and the StarCraftCIFAR10 train/test datasets. The
code to recreate (or extend) the dataset extraction and pro-
cessing, as well as code to load the data, rerun benchmarks,
and recreate demos, can be found at the previous link, and
is maintained on GitHub. Instructions for loading and using
the dataset can be found in the README in the dataset as
well as in the code repository. The dataset has been openly
published under a permissive CC BY 4.0 license, and the
code has been openly published on GitHub with an MIT
license. The authors bear all responsibility in case of vio-
lation of rights and confirm the CC license for the provided
datasets.

B. Direct Loading of Window Data

While we encourage using the corresponding PyTorch
dataset classes that we have developed (one class for each
representation) to load in StarCraftImage data, one can also
directly access the data by loading in the relevant .png file
and metadata row for each window. To assist with this di-
rect data access, we now describe the data structure used to
store the image data for each window (i.e., how to corre-
spond each .png to the hyperspectral format H discussed
in subsection 2.2).

As a reminder, the bag-of-units representation collapses
the channel, axis of our hyperspectral image H into k ID
matrices and k timestamp matrices of size (64, 64), where
the ID matrix contains the PID of the units present at each
(x, y) coordinate, the timestamp matrices contain the cor-
responding timestamp that the unit was last seen, and k is
the max number of units present at one (x, y) location in
H , seen in the top right of Fig. 2. We can further compress
this bag-of-units representation by stacking the bag-of-units
for player 1, player 2, and neutral to match the RGB struc-
ture of a .png image, where the red channel corresponds to
player 2, the blue channel to player 1, and the green chan-
nel corresponds to the neutral units (e.g., mineral deposits).
To fit the structure of a RGB image, we can tile the bag-
of-units into rows where the first RGB row corresponds to
the timestamp matrices and the second row corresponds to
the PID matrices. Finally, we add a third row to record
the map state information for each player, specifically, the
map state row contains: [RGB ’is visible’, RGB ’is seen’,
RGB ’creep’]. This leaves us with a RGB .png image
with height 3 ∗ 64 and width k ∗ 64. Examples of this can
be seen in Fig. 7.

(a) Max number of units overlapped is 6.

(b) Max number of units overlapped is 4.

(c) Max number of units overlapped is 4.

Figure 7. Three examples of the dense bag-of-units .png show
how the hyperspectral image data for a window is stored in a sim-
ple .png file. The hyperspectral information is represented by
tiling 64 x 64 RGB images. The first row is the unit timestamps
(0-255), the second row is the unit ids (0-255), and the third row
contains map state information (is visible, is seen, and
creep). The blue channel encodes player 1, the red channel en-
codes player 2, and the green channel encodes neutral elements.
We note how the width of the image varies, as it is determined by
how many overlapping units at the same location there are in that
window. For example, the top example had 6 units overlapping at
one location, so it has a width of six 64x64 images whereas the
other two only had a max of 4 units overlapping at one location.

C. Broader Impact

We introduced this spatial reasoning dataset to allow for
quick prototyping of complex multi-agent spatial reason-
ing ML models and easy benchmarking to compare models
(similar to the use cases of MNIST and CIFAR10). While
our dataset contains complex dynamics that are based on

https://starcraftdata.davidinouye.com/

real human actions, it is still a simulation-based dataset, and
thus methods tested on this dataset should be further tested
in real-world cases before a real-world deployment. Ad-
ditionally, since this dataset is a general spatial reasoning
dataset that can either be directly applied or easily adapted
to real-world cases, there is an opportunity for this dataset to
be used for tasks that have a negative societal impact (e.g.,
unauthorized surveillance/tracking). We do not condone the
usage of this dataset for the development of harmful models
for such negative tasks. Furthermore, since our replays are
created by humans and have personal metadata like the ac-
tions per minute (APM) and match-making rating (MMR)
for each player, this could possibly be used to uniquely at-
tribute a replay to a player. However, this likely is only pos-
sible for extreme APM, MMR values (e.g., the top MMR
value), and even then, APM is match-specific and a player’s
MMR updates with each match. Finally, all replays were
freely uploaded in an open-source manner and (to the best
of our knowledge) contain no personally identifying infor-
mation (e.g., name of the uploader, upload IP address, etc.).

D. Metadata Description and Suggested Class-
wise Splits

In this section we discuss the metadata collected along-
side the image data for each window in StarCraftImage.

D.1. Metadata Description

For each window in StarCraftImage, we also collected
relevant match/window metadata, which can be seen in
Fig. 8. Each entry belongs to one of three main subgroups:
dynamic metadata (which is information that is specific
to each window), static metadata (which is information
that is specific to each replay but does not change across
windows within a replay), and computed metadata (which
is information added by a user e.g., a label for that window
for a classification task). Namely, the dynamic metadata
contains a vector of tabular features for both player1 and
player2 such as resource counts for each player. Specfically,
these tabular features correspond to: [’player id’,
’minerals’, ’vespene’, ’food used’,
’food cap’, ’food army’, ’food workers’,
’idle worker count’, ’army count’,
’warp gate count’, ’larva count’]. Addi-
tionally, the dynamic metadata contains: date time str
which is a string representing the date that window
was added to the dataset, frame idx which is the
frame index within a replay which corresponds to the
last frame included in a window (e.g., if a window’s
dynamic.frame idx=1000 then that window summa-
rizes frames 745 to 1000 of the given replay). The dynamic
window percent corresponds to how far into a match
that window takes place, represented as a fraction. For
the static metadata, this is broken into game info

(which corresponds to information that is mostly match
specific such as map information) and replay info
(which replays to information about the replay file and the
players contained in the file). In the game info, the race
information is encoded following the PySC2 convention
where Terran = 1, Zerg = 2, Protoss = 3, and Random
= 4. The player-level information can be found in the
replay info.player stats section where APM
corresponds to the player’s Actions Per Minute for that
match and the player’s MMR is the player’s Match Making
Rating (which can be thought of as a skill-level determined
by Blizzard, where higher is more skilled). We include
these metadata to give more details about each window,
but most importantly to allow a user to split the Star-
CraftImage dataset along these features for a specific task.
For example, if one is developing a model which should
generalize to new environments, a user can split this dataset
on the static.game info.map name feature, and use
windows from five of the seven maps for training/validation
and test on windows from the remaining two maps. To aid
in determining filtering methods, histograms for numeric
entries within the metadata can be seen in Fig. 9.

D.2. Splitting dataset to k Classes

When working with global-spatial reasoning tasks (e.g.,
whole-image classification), the question of how to split this
dataset into k classes arises. Thus, we suggest some possi-
ble ways to split the dataset along with simple benchmark
accuracy values for comparing the difficulty of the splits for
two of the most common classification schemes ML: binary
classification (k=2) and 10-way classification (k=10). For
all splitting experiments we mention running below, we use
the same ConvNet architecture of two convolutional layers
with max-pooling in-between, three fully connected layers,
all with ReLU activations, and train for 20 epochs using
SGD with a learning rate of 0.001 and momentum of 0.9.

For binary classification, the obvious choice is to per-
form match outcome prediction (i.e., “did Player 1 win?”),
as mentioned in the main body of this work. While an im-
portant task, this can be difficult even for human experts
watching a StarCraftII E-sports event as well as difficult
for an AI to solve/ For example, the best model in [38]
can only achieve 65% outcome prediction training accuracy
for frames taken 15 minutes into a game, and when tested
on the grayscale StarCraftMNIST and RGB StarCraftCI-
FAR10 datasets split on the match outcome variable (which
include windows throughout all points in the game rather
than just mid-to-end game), we report 57.9% and 59.4% test
accuracy, respectively, on the same task. A binary predic-
tion task that is more easily interpreted is the task of predict-
ing if a window comes from the first half or second half of
a replay (“is dynamic.window percent ¡ 0.5?”). This
is also somewhat easier to solve (we report a testing ac-

Metadata for Window: 3,607,787 Column1
dynamic.date_time_format %Y-%m-%d_%H-%M-%S

dynamic.date_time_str 2023-03-16_19-06-53

dynamic.frame_idx 14855

dynamic.num_windows 58

dynamic.timestamp 1679008013

dynamic.window_idx 57

dynamic.window_percent 0.982758621

static.extracted_image_size [64, 64]

static.game_info.map_name Odyssey LE

static.game_info.mod_names ['Mods/Core.SC2Mod', 'Mods/Liberty.SC2Mod',

'Mods/Swarm.SC2Mod', 'Mods/Void.SC2Mod',

'Battle.net/Cache/f1/9f/f19f56b...8ea3a5.s2ma']

static.game_info.options.raw TRUE

static.game_info.options.score TRUE

static.game_info.player_info.player_1.race_actual 3

static.game_info.player_info.player_1.race_requested 3

static.game_info.player_info.player_2.race_actual 1

static.game_info.player_info.player_2.race_requested 1

static.game_info.start_raw.map_size.x 168

static.game_info.start_raw.map_size.y 184

static.game_info.start_raw.pathing_grid.bits_per_pixel 8

static.game_info.start_raw.pathing_grid.size.x 168

static.game_info.start_raw.pathing_grid.size.y 184

static.game_info.start_raw.placement_grid.bits_per_pixel 8

static.game_info.start_raw.placement_grid.size.x 168

static.game_info.start_raw.placement_grid.size.y 184

static.game_info.start_raw.playable_area.p0.x 8

static.game_info.start_raw.playable_area.p0.y 8

static.game_info.start_raw.playable_area.p1.x 160

static.game_info.start_raw.playable_area.p1.y 164

static.game_info.start_raw.start_locations.x 143.5

static.game_info.start_raw.start_locations.y 24.5

static.game_info.start_raw.terrain_height.bits_per_pixel 8

static.game_info.start_raw.terrain_height.size.x 168

static.game_info.start_raw.terrain_height.size.y 184

static.num_frames_per_window 255

static.replay_info.base_build 55958

static.replay_info.data_build 55958

static.replay_info.data_version 5BD7C31B44525DAB46E64C4602A81DC2

static.replay_info.game_duration_loops 14855

static.replay_info.game_duration_seconds 663.2159424

static.replay_info.game_fps_calculated 22.39843624

static.replay_info.game_version 3.16.1.55958

static.replay_info.player_stats.player_1.apm 242

static.replay_info.player_stats.player_1.mmr 3192

static.replay_info.player_stats.player_1.result Loss

static.replay_info.player_stats.player_1.result_int 2

static.replay_info.player_stats.player_2.apm 103

static.replay_info.player_stats.player_2.mmr 3120

static.replay_info.player_stats.player_2.result Win

static.replay_info.player_stats.player_2.result_int 1

static.replay_name 378bfb2ce94.….e9451dc93.SC2Replay

computed.target_id 9

computed.target_label ('Odyssey LE', 'End')

Metadata for Window: 3,607,787

Figure 8. An example of the metadata collected for each window of a replay. Descriptions of the key, value pairs are given in Appendix D.

0 10000 20000 30000 40000
0

5000

10000

15000

20000

25000
dynamic.frame_idx

0 25 50 75 100 125 150
0

5000

10000

15000

20000

25000

30000

35000

40000
dynamic.num_windows

1.67885 1.67890 1.67895 1.67900 1.67905
1e9

0

5000

10000

15000

20000

25000

30000

dynamic.timestamp

0 25 50 75 100 125 150
0

10000

20000

30000

40000

dynamic.window_idx

0.0 0.2 0.4 0.6 0.8 1.0
0

10000

20000

30000

40000

dynamic.window_percent

1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1e6static.game_info.player_info.player_1.race_actual

1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1e6static.game_info.player_info.player_1.race_requested

1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1e6static.game_info.player_info.player_2.race_actual

1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1e6static.game_info.player_info.player_2.race_requested

150 160 170 180 190 200
0

100000

200000

300000

400000

500000

600000

700000

800000

static.game_info.start_raw.map_size.x

150 160 170 180 190 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2 1e6static.game_info.start_raw.map_size.y

7.6 7.8 8.0 8.2 8.4
0.0

0.5

1.0

1.5

2.0

2.5

1e6static.game_info.start_raw.pathing_grid.bits_per_pixel

150 160 170 180 190 200
0

100000

200000

300000

400000

500000

600000

700000

800000

static.game_info.start_raw.pathing_grid.size.x

150 160 170 180 190 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2 1e6static.game_info.start_raw.pathing_grid.size.y

7.6 7.8 8.0 8.2 8.4
0.0

0.5

1.0

1.5

2.0

2.5

1e6static.game_info.start_raw.placement_grid.bits_per_pixel

150 160 170 180 190 200
0

100000

200000

300000

400000

500000

600000

700000

800000

static.game_info.start_raw.placement_grid.size.x

150 160 170 180 190 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2 1e6static.game_info.start_raw.placement_grid.size.y

7.5 10.0 12.5 15.0 17.5 20.0 22.5
0

200000

400000

600000

800000

static.game_info.start_raw.playable_area.p0.x

4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1e6static.game_info.start_raw.playable_area.p0.y

145 150 155 160 165 170 175
0

200000

400000

600000

800000

static.game_info.start_raw.playable_area.p1.x

140 145 150 155 160 165 170 175
0

100000

200000

300000

400000

static.game_info.start_raw.playable_area.p1.y

20 40 60 80 100 120 140 160
0

50000

100000

150000

200000

250000

300000

350000

400000

static.game_info.start_raw.start_locations.x

20 40 60 80 100 120 140 160
0

100000

200000

300000

400000

static.game_info.start_raw.start_locations.y

7.6 7.8 8.0 8.2 8.4
0.0

0.5

1.0

1.5

2.0

2.5

1e6static.game_info.start_raw.terrain_height.bits_per_pixel

150 160 170 180 190 200
0

100000

200000

300000

400000

500000

600000

700000

800000

static.game_info.start_raw.terrain_height.size.x

150 160 170 180 190 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2 1e6static.game_info.start_raw.terrain_height.size.y

254.6 254.8 255.0 255.2 255.4
0.0

0.5

1.0

1.5

2.0

2.5

1e6 static.num_frames_per_window

0 10000 20000 30000 40000
0

5000

10000

15000

20000

static.replay_info.game_duration_loops

Od
ys

se
y

LE

As
ce

ns
io

n
to

 A
iu

r L
E

M
ec

h
De

po
t L

E

In
te

rlo
pe

r L
E

Ab
ys

sa
l R

ee
f L

E

Ac
ol

yt
e

LE

Ca
ta

lle
na

 L
E

(V
oi

d)

0

2000

4000

6000

8000

10000
static.game_info.map_name

5.5 6.0 6.5 7.0 7.5 8.0
1e 6+2.239843e1

0

5000

10000

15000

20000

25000

static.replay_info.game_fps_calculated

0 200 400 600
0

5000

10000

15000

20000

25000

30000

35000

40000

static.replay_info.player_stats.player_1.apm

2000 3000 4000 5000 6000 7000
0

5000

10000

15000

20000

25000

30000

35000

static.replay_info.player_stats.player_1.mmr

1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
1e6static.replay_info.player_stats.player_1.result_int

0 100 200 300 400 500 600 700
0

5000

10000

15000

20000

25000

static.replay_info.player_stats.player_2.apm

2000 3000 4000 5000 6000 7000
0

5000

10000

15000

20000

25000

30000

35000

static.replay_info.player_stats.player_2.mmr

1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
1e6static.replay_info.player_stats.player_2.result_int

Figure 9. Histograms of the numerical values entries in the metadata (best viewed zoom in). To keep the x-axis interpretable, we excluded
any outliers which have a game duration loop > 40,000 and any replays which hold a negative MMR value for either player (which is
likely a result of a bug in the .SC2Replay file). Any histograms which are fully rectangular are static values at the center point of the
bin (e.g., static.num frames per window=255 for all windows).

curacy of 74.3% and 76.9% for grayscale StarCraftMNIST
and RGB StarCraftCIFAR10 datasets with this split, respec-
tively), while still requiring a model to learn environmental
dynamics to solve.

Splitting the StarCraftImage dataset for 10-way classi-
fication (e.g., StarCraftMNIST and StarCraftCIFAR10) is

more difficult since there are no natural way to split the
dataset 10 ways. The splitting method which most closely
aligns with spatial reasoning problems is likely splitting
via player race information + match outcome prediction,
as this requires learning battlefield strategy/dynamics (for
outcome prediction) and understanding of unit information

(for player race prediction). Thus, this is the 10-way split-
ting method suggested in subsection 2.4 in the main body of
this work. However, from a purely ML perspective, this is
an extremely difficult classification problem; which is sup-
ported by our testing accuracy of 26.4% and 28% for Star-
CraftMNIST and StarCraftCIFAR10 datasets created with
the split detailed in subsection 2.4. Thus, for purposes
with a stronger abstract ML focus, we suggest a 10-way
split that combines the “is beginning or end” binary vari-
able from above with a prediction of the map name. This
task requires the model to learn environment information
for the map name and battlefield dynamics for the begin-
ning/end prediction and is more solvable than a split requir-
ing match outcome prediction. Specifically, since there are
7 maps in total, we suggest subsampling to only 5 maps,
then further splitting each of these 5 map groups into “be-
ginning “ and “end” groups (based on whether or not the
window takes place in the beginning 50% of the match), to
get 10 classes. Examples from such a split can be seen in
figure Fig. 13, and in our experiments, we received a test-
ing accuracy of 77.2% and 77.9% for StarCraftMNIST and
StarCraftCIFAR10 datasets, respectively. Heuristically, we
have found this 10-way split to be a good balance between
problem realism and difficulty/human interpretability, and
thus we will be using it for the following task demonstra-
tions.

E. Benchmark Evaluations On Multi-Agent
Spatial Reasoning Tasks

In this section, we report benchmark results on 4 bench-
mark multi-agent spatial reasoning tasks, which incorporate
training 60 U-Net-based [35] models. Unlike the bench-
mark results in the main paper, (e.g., Table 1), the results
seen here and throughout the rest of the appendix are trained
on a smaller StarCraftImage dataset (specifically, these re-
sults are generated from a random 1.8 million window sub-
set, i.e. a random 50% subset of the main dataset). This was
done to allow for faster model training, thus allowing us to
add more models beyond the three ResNet models seen in
the main paper (specifically, 60 models were trained on this
smaller dataset).

The four benchmark tasks consist of two tasks on unit
type identification and two tasks for unit tracking (next hy-
perspectral window prediction). Both task sets consist of
first training and evaluating on “clean” (unaltered) data as
well as a second task of training on data which is first
passed through a simulation of a noisy sensor network.
This simulation consists of 50 sensors with a radius of 5.5
pixels with different sensor placement methodologies (e.g.,
grid, random, quasi-random, and diagonal barrier) and com-
munication failures during sensor fusion. For reference,
grid-based placements are commonly used in environmen-
tal monitoring data sets where they are optimally placing

sensors to cover the environment space [28]. Random and
Quasi-random deployments are typical when sensors can-
not be placed optimally (e.g., when they are dropped out of
planes/helicopters). The barrier placements come from the
well-studied barrier coverage problem, which is commonly
used for border surveillance, road monitoring, etc. For fur-
ther examples studying these different coverage types see
[10] which provides a taxonomy for different coverage pro-
tocols including the ones mentioned above. For a study
on different failure types, including the ones seen here, see
[45]. Examples of the different placement types can be seen
in Fig. 10.

Figure 10. Example masks for sensor network simulations con-
taining 50 sensors with five different placement strategies [grid,
random, quasi-random, barrier-d1, barrier-d2] (where yellow is a
location that is visible). Each sensor has a radius of 5.5. pixels and
a 20% chance of being dropped during the sensor fusion process
(e.g., due to a communication failure).

E.1. Unit Type Identification

As discussed in section 3, the goal of this task is to train
a model to take a 64 x 64 RGB image (similar to the for-
mat of the StarCraftCIFAR10 images) as input and to out-
put a 64 x 64 matrix corresponding to the unit ids for each
location. This problem is analogous to fine-grained multi-
object detection, where given raw images (e.g., satellite im-
ages), our goal is to predict what kind of unit is present at
each location (if there is a unit present at all). For example,
for a given window, if there is a non-zero value at location,
(Red, i, j), then we know an enemy unit passed through lo-
cation (i, j) – our goal now is to figure out that unit’s type
(e.g., ZERG QUEEN, PROTOSS ORACLE, etc.).

We used the unaltered RGB images as input and synthe-
sized the 64 x 64 unit id label matrix from the StarCraftHy-
per dataset. In cases where multiple units were present at

oracle input grid input random input quasi_random input barrier_d1 input barrier_d2 input

oracle labels grid labels random labels quasi_random labels barrier_d1 labels barrier_d2 labels

Figure 11. Example input-output pairs for the sample from the Unit Type Identification task with the clean representation as well as
representations which are prepossessed by corruption simulations via faulty sensing networks five different placement strategies [grid,
random, quasi-random, barrier-d1, barrier-d2] (where yellow is a location that is visible). Note that during training, the labels are also
masked to simulate training on noisily labeled data.

the same location (which is possible since a window covers
a span of 255 in-game frames/seconds), we set the id for that
location to that of the most recent unit. We used the FastAI
library [17] to train six U-Net models [35] with backbones:
ResNet18, ResNet34 [15], Squeezenet1 0, Squeezenet1 1
[19], XResNet18, XResNet34 [16], on this dataset for 10
epochs with cross-entropy loss, a batch size of (512 for
ResNet*, 256 for Squeezenet*, and 512 for XResNet*), and
default FastAI configuration settings. We trained each of the
above models on the clean (i.e., noiseless) dataset as well as
on all five sensor placement variations where both the in-
put images and output label matrices were masked by the
generated sensor masks (see Fig. 11 for examples), yield-
ing 36 models in total. During testing, we tested all models
on held-out clean data, which simulates the situation where
one has noisy training data but wants to evaluate an algo-
rithm with respect to clean ground truth data for final evalu-
ation. We report the Cross-Entropy error, Unit Accuracy
(was the unit type correctly predicted), and the averaged
Dice coefficient for all models in Table 6. As expected,
there is significant performance derogation across models
when moving from the clean data to the noisy data, and this
is most evident in the diagonal barrier placements. As seen
by the unit accuracy metric, this is a hard problem (there
are 340 possible unit ids for each location), which we hope
future work will be able to innovate upon.

E.2. Next Hyperspectral Window Prediction

Here our goal is to use the StarCraftHyper dataset to train
a model on the common spatial reasoning task of object
tracking. For this, we frame this task as: a given replay,
we want to take the kth hyperspectral window as input (with
shape 340 x 64 x 64) and have a model forecast how all
units will move to their locations in the k+ 1 hyperspectral
window. Specifically, the model must output the difference
(i.e., movement) between the two hyperspectral windows
(ground truth = (Hk+1 − Hk) and has shape (340, 64,
64)).

To do this, we use the FastAI library [17] and the
SMP library [18] to train four U-Net [35] models with
backbones: ResNet18, ResNet34, ResNet50 [15], and
ResNext50 32x4d [43] on both clean versions of the dataset
and five noisy versions of the dataset matching the five sen-
sor network simulations (see Fig. 12 for examples). Due
to the large size of the samples, we use a batch size of 20
across all models, and to accelerate the training process we
randomly subsample the overall training data to 60K win-
dow pairs. We train all models for 10 epochs using the
Mean-Squared Error loss and otherwise default FastAI con-
figuration settings. We then test our models on 10K held
out clean window pairs, and report the MSE loss. Addition-
ally, we bin the groundtruth test data into [−1, 0, 1] where
location (uid, i, j) is −1 if a specific unit type left location

oracle input grid input random input quasi_random input barrier_d1 input barrier_d2 input

oracle labels grid labels random labels quasi_random labels barrier_d1 labels barrier_d2 labels

Figure 12. Example input output pairs of the same sample from the Next Hyperspectral Window prediction task with the clean representa-
tion as well as representations which are prepossessed by corruption simulations via faulty sensing networks with five different placement
strategies [grid, random, quasi-random, barrier-d1, barrier-d2] (where yellow is a location that is visible). Note that during training, the
labels are also masked to simulate training on noisily labeled data.

(i, j) from window k to window k + 1 (i.e. the unit moved
away from that spot), 0 means no movement happened, and
1 means unit uid moved into location (i, j). With this, we
report the False Positive Rate (% of times a model predicts
movement happens when it doesn’t), True Positive Rate (+)
(% of the time a model correctly predicts +1, a unit moved
into a location), and the True Positive Rate (-). The results
for this can be seen in Table 7, where while the MSE is low-
est for the models trained on the clean data, these models
also tend to have a higher false positive rate.

F. Additional Demonstrations of ML tasks on
the StarCraftImage Dataset

Predicting match outcome As mentioned previously,
this is a very difficult task which can be hard even for human
experts. [38] performed the match outcome prediction task
on features extracted from PySC2, and report only 65% out-
come prediction training accuracy for frames taken as far as
15 minutes into a game. For this task, we use two datasets:
one which has the grayscale window formats of StarCraftM-
NIST and the other with the RGB window formats of Star-
CraftCIFAR10. These datasets are constructed such that the
train/test splits for the positive class (Player1IsWinner) and
negative class (Player1IsNotWinner) are evenly balanced
with (60k, 10k) and (50k, 10k) train, test examples for the
grayscale and RGB datasets, respectively. We found the

performance of our ConvNet model (mentioned in the pre-
vious section) to be similar to that of [38], where we see
only 57.9% test accuracy on the grayscale window dataset
and 59.4% test accuracy on the RGB window dataset.

10 class classification Here we use the map name +
is beginning or end 10-way class split mentioned in sub-
section D.2 and seen in Fig. 13. We apply our Con-
vNet model to the StarCraftMNIST and StarCraftCIFAR10
datasets. After training for 20 epochs, we received a test-
ing accuracy of 77.2% and 77.9% for StarCraftMNIST and
StarCraftCIFAR10, respectively.

Imputing occluded objects For this task, we simulate oc-
cluded objects via randomly masking out a circle of pix-
els with a radius 5px, which can be seen to approximate
cloud coverage or a fused image with missing data (see
left of Fig. 15 for examples). For this task, our goal is
to impute the missing information and to do this we im-
plement a VAE model [22] to denoise the inpainted im-
age. Our VAEImputer encoder and decoder both con-
sist of six convolutional layers (with a 3x3 kernel, stride
of 2, and padding of 1), each with batch norm and
leakyReLu activations and with one fully connected layer
in-between. For the encoder, the convolutional layers con-
sist of [3, 32, 64, 128, 128, 512] channels, the decoder con-

volutional layers consist of [512, 128, 128, 64, 32, 3] chan-
nels, and the fully connected layer takes in the 512 chan-
nels and projects this to the 64 dimensional µ and σ latent
parameter space. We train the model for 100 epochs on
StarCraftMNIST (which consists of the same 60k training
images as in the 10-class map-based split), with Adam opti-
mizer [21] with a learning rate of 5e-3 and β = (0.9, 0.999).
The results can be seen in Fig. 15, where the model does
well at imputing the missing data, at the expense of blur-
ring the image due to artifacting from the VAE.

Unit type identification In this task we simulate the case
where a model is only given a raw image showing the pres-
ence of a unit, but not what type of unit it is. This can
be mapped to a colorization task by first taking an RGB
sample from StarCraftCIFAR10 (where each channel cor-
responds to a specific player’s units) and averaging along
the color dimension to get a grayscale image that has no
owner information. Then, to recover the owner information
(i.e. whether a unit belongs to Player 1, Player 2, or Neu-
tral), we colorize the image by predicting which channel
each unit should belong to. To do this, we use a ResNet-
101 model [15], which has been adapted to have an out-
put dimensionality of 32x32x3 (the number of pixels in a
StarCraftCIFAR10 image). We train this model on the Star-
CraftCIFAR10 dataset for 100 epochs using the Adam opti-
mizer [21] with a learning rate of 5e-3 and β = (0.9, 0.999).
The results can be seen in Fig. 15, where the model cor-
rectly identifies between neutral and non-neutral units, but
has trouble determining whether a unit belongs to Player 1
or Player 2 due to both players having random starting cor-
ners of the map.

Table 5. A per-window frequency table for the non-neutral units across all windows in the StarCraftImage dataset, where Avg. Per Win.
corresponds to the average number of times that unit is present per window, Perc. is the number of times that unit appeared divided by the
total unit appearances, and Cum Perc. is the cumulative percentage up to that row. Note, this analysis was performed on the 30k replay
subset but should be quite similar to the 60k frequencies.

Unit Name

Avg.
Per
Win. Perc.

Cum
Perc. Unit Name

Avg.
Per
Win. Perc.

Cum
Perc. Unit Name

Avg.
Per
Win. Perc.

Cum
Perc.

TERRAN_SCV 29.4 12.4% 12.4% PROTOSS_CARRIER 0.7 0.3% 92.3% PROTOSS_DARKSHRINE 0.1 0.0% 99.5%
ZERG_DRONE 21.5 9.1% 21.5% TERRAN_RAVEN 0.7 0.3% 92.6% PROTOSS_FLEETBEACON 0.1 0.0% 99.5%
PROTOSS_PROBE 19.7 8.3% 29.8% PROTOSS_GATEWAY 0.6 0.3% 92.9% TERRAN_THORAP 0.1 0.0% 99.6%
ZERG_ZERGLING 16.0 6.7% 36.5% ZERG_SPAWNINGPOOL 0.6 0.2% 93.1% TERRAN_FUSIONCORE 0.1 0.0% 99.6%
TERRAN_MARINE 14.1 5.9% 42.5% PROTOSS_WARPPRISM 0.6 0.2% 93.4% TERRAN_VIKINGASSAULT 0.1 0.0% 99.6%
ZERG_OVERLORD 9.0 3.8% 46.2% TERRAN_HELLIONTANK 0.6 0.2% 93.6% ZERG_LOCUSTMPFLYING 0.1 0.0% 99.6%
TERRAN_MEDIVAC 5.7 2.4% 48.7% TERRAN_COMMANDCENTER 0.6 0.2% 93.9% ZERG_CHANGELING 0.1 0.0% 99.7%
ZERG_ROACH 5.1 2.2% 50.8% ZERG_EVOLUTIONCHAMBER 0.6 0.2% 94.1% TERRAN_STARPORTFLYING 0.1 0.0% 99.7%
ZERG_CREEPTUMORBURROWED 5.0 2.1% 52.9% TERRAN_FACTORYTECHLAB 0.6 0.2% 94.4% TERRAN_REACTOR 0.1 0.0% 99.7%
ZERG_HYDRALISK 4.6 1.9% 54.9% TERRAN_THOR 0.5 0.2% 94.6% ZERG_LOCUSTMP 0.0 0.0% 99.7%
PROTOSS_STALKER 4.4 1.9% 56.7% PROTOSS_COLOSSUS 0.5 0.2% 94.8% ZERG_ROACHBURROWED 0.0 0.0% 99.7%
TERRAN_MARAUDER 4.3 1.8% 58.6% PROTOSS_HIGHTEMPLAR 0.5 0.2% 95.0% ZERG_ULTRALISKCAVERN 0.0 0.0% 99.8%
PROTOSS_PYLON 4.1 1.7% 60.3% PROTOSS_CYBERNETICSCORE 0.5 0.2% 95.2% PROTOSS_ORACLESTASISTRAP 0.0 0.0% 99.8%
ZERG_LARVA 3.8 1.6% 61.9% PROTOSS_DARKTEMPLAR 0.5 0.2% 95.4% TERRAN_GHOSTACADEMY 0.0 0.0% 99.8%
TERRAN_SUPPLYDEPOT 3.4 1.4% 63.3% ZERG_SPINECRAWLER 0.4 0.2% 95.6% TERRAN_TECHLAB 0.0 0.0% 99.8%
ZERG_QUEEN 3.3 1.4% 64.7% TERRAN_WIDOWMINEBURROWED 0.4 0.2% 95.7% ZERG_SPINECRAWLERUPROOTED 0.0 0.0% 99.8%
PROTOSS_ZEALOT 2.9 1.2% 65.9% TERRAN_BATTLECRUISER 0.4 0.2% 95.9% ZERG_LURKERDENMP 0.0 0.0% 99.8%
TERRAN_SIEGETANK 2.8 1.2% 67.1% PROTOSS_INTERCEPTOR 0.4 0.2% 96.1% PROTOSS_WARPPRISMPHASING 0.0 0.0% 99.8%
TERRAN_REFINERY 2.7 1.2% 68.3% TERRAN_STARPORTREACTOR 0.4 0.2% 96.2% PROTOSS_PYLONOVERCHARGED 0.0 0.0% 99.9%
ZERG_MUTALISK 2.7 1.1% 69.4% PROTOSS_STARGATE 0.4 0.2% 96.4% ZERG_OVERLORDCOCOON 0.0 0.0% 99.9%
ZERG_EXTRACTOR 2.3 1.0% 70.3% PROTOSS_FORGE 0.4 0.2% 96.6% ZERG_CHANGELINGZEALOT 0.0 0.0% 99.9%
TERRAN_BARRACKS 2.3 1.0% 71.3% TERRAN_ARMORY 0.4 0.2% 96.7% ZERG_RAVAGERCOCOON 0.0 0.0% 99.9%
ZERG_BANELING 2.3 0.9% 72.2% PROTOSS_ROBOTICSFACILITY 0.4 0.1% 96.9% ZERG_CHANGELINGZERGLINGWINGS0.0 0.0% 99.9%
TERRAN_VIKINGFIGHTER 2.2 0.9% 73.2% ZERG_BANELINGNEST 0.3 0.1% 97.0% ZERG_SPORECRAWLERUPROOTED 0.0 0.0% 99.9%
PROTOSS_ADEPT 2.2 0.9% 74.1% TERRAN_STARPORTTECHLAB 0.3 0.1% 97.1% ZERG_GREATERSPIRE 0.0 0.0% 99.9%
ZERG_EGG 2.0 0.8% 74.9% ZERG_SWARMHOSTMP 0.3 0.1% 97.2% ZERG_CHANGELINGMARINESHIELD 0.0 0.0% 99.9%
PROTOSS_ASSIMILATOR 1.9 0.8% 75.7% PROTOSS_ADEPTPHASESHIFT 0.3 0.1% 97.3% TERRAN_AUTOTURRET 0.0 0.0% 99.9%
TERRAN_SUPPLYDEPOTLOWERED 1.9 0.8% 76.5% PROTOSS_TWILIGHTCOUNCIL 0.3 0.1% 97.4% ZERG_NYDUSNETWORK 0.0 0.0% 99.9%
ZERG_OVERSEER 1.9 0.8% 77.3% ZERG_LAIR 0.3 0.1% 97.6% ZERG_ZERGLINGBURROWED 0.0 0.0% 99.9%
TERRAN_REAPER 1.8 0.8% 78.1% ZERG_LURKERMP 0.3 0.1% 97.7% ZERG_LURKERMPEGG 0.0 0.0% 100.0%
TERRAN_MISSILETURRET 1.7 0.7% 78.8% ZERG_ROACHWARREN 0.2 0.1% 97.8% TERRAN_KD8CHARGE 0.0 0.0% 100.0%
TERRAN_HELLION 1.7 0.7% 79.5% TERRAN_FACTORYREACTOR 0.2 0.1% 97.9% ZERG_CHANGELINGMARINE 0.0 0.0% 100.0%
ZERG_HATCHERY 1.6 0.7% 80.2% TERRAN_ORBITALCOMMANDFLYING0.2 0.1% 97.9% ZERG_SWARMHOSTBURROWEDMP 0.0 0.0% 100.0%
PROTOSS_WARPGATE 1.6 0.7% 80.9% ZERG_CREEPTUMOR 0.2 0.1% 98.0% PROTOSS_DISRUPTORPHASED 0.0 0.0% 100.0%
TERRAN_MULE 1.5 0.6% 81.5% ZERG_BROODLING 0.2 0.1% 98.1% ZERG_BROODLORDCOCOON 0.0 0.0% 100.0%
PROTOSS_IMMORTAL 1.5 0.6% 82.2% ZERG_BANELINGCOCOON 0.2 0.1% 98.2% ZERG_DRONEBURROWED 0.0 0.0% 100.0%
PROTOSS_OBSERVER 1.4 0.6% 82.8% TERRAN_BUNKER 0.2 0.1% 98.3% ZERG_NYDUSCANAL 0.0 0.0% 100.0%
TERRAN_ORBITALCOMMAND 1.3 0.6% 83.3% PROTOSS_TEMPEST 0.2 0.1% 98.3% ZERG_BANELINGBURROWED 0.0 0.0% 100.0%
PROTOSS_NEXUS 1.3 0.5% 83.9% TERRAN_GHOST 0.2 0.1% 98.4% ZERG_CHANGELINGZERGLING 0.0 0.0% 100.0%
TERRAN_CYCLONE 1.2 0.5% 84.4% ZERG_BROODLORD 0.2 0.1% 98.5% ZERG_INFESTORTERRAN 0.0 0.0% 100.0%
TERRAN_LIBERATOR 1.2 0.5% 84.9% TERRAN_PLANETARYFORTRESS 0.2 0.1% 98.6% ZERG_TRANSPORTOVERLORDCOCOON0.0 0.0% 100.0%
TERRAN_WIDOWMINE 1.2 0.5% 85.4% TERRAN_BARRACKSFLYING 0.2 0.1% 98.6% TERRAN_POINTDEFENSEDRONE 0.0 0.0% 100.0%
PROTOSS_PHOENIX 1.1 0.5% 85.9% ZERG_SPIRE 0.2 0.1% 98.7% ZERG_HYDRALISKBURROWED 0.0 0.0% 100.0%
PROTOSS_ORACLE 1.1 0.5% 86.3% ZERG_INFESTATIONPIT 0.1 0.1% 98.8% ZERG_INFESTEDTERRANSEGG 0.0 0.0% 100.0%
ZERG_CORRUPTOR 1.1 0.5% 86.8% PROTOSS_DISRUPTOR 0.1 0.1% 98.8% TERRAN_NUKE 0.0 0.0% 100.0%
PROTOSS_MOTHERSHIPCORE 1.0 0.4% 87.2% TERRAN_COMMANDCENTERFLYING 0.1 0.1% 98.9% player_(Unknown) 0.0 0.0% 100.0%
PROTOSS_PHOTONCANNON 1.0 0.4% 87.7% ZERG_INFESTOR 0.1 0.1% 98.9% ZERG_QUEENBURROWED 0.0 0.0% 100.0%
ZERG_RAVAGER 1.0 0.4% 88.1% ZERG_HYDRALISKDEN 0.1 0.1% 99.0% ZERG_PARASITICBOMBDUMMY 0.0 0.0% 100.0%
TERRAN_BARRACKSREACTOR 1.0 0.4% 88.5% ZERG_VIPER 0.1 0.1% 99.0% PROTOSS_SHIELDBATTERY 0.0 0.0% 100.0%
TERRAN_FACTORY 1.0 0.4% 88.9% TERRAN_SENSORTOWER 0.1 0.0% 99.1%
TERRAN_STARPORT 0.8 0.4% 89.2% ZERG_INFESTORBURROWED 0.1 0.0% 99.1%
ZERG_SPORECRAWLER 0.8 0.4% 89.6% TERRAN_LIBERATORAG 0.1 0.0% 99.2%
PROTOSS_SENTRY 0.8 0.3% 89.9% ZERG_OVERLORDTRANSPORT 0.1 0.0% 99.2%
PROTOSS_VOIDRAY 0.8 0.3% 90.2% ZERG_CREEPTUMORQUEEN 0.1 0.0% 99.3%
TERRAN_BANSHEE 0.8 0.3% 90.6% PROTOSS_MOTHERSHIP 0.1 0.0% 99.3%
ZERG_ULTRALISK 0.7 0.3% 90.9% PROTOSS_TEMPLARARCHIVE 0.1 0.0% 99.3%
PROTOSS_ARCHON 0.7 0.3% 91.2% ZERG_HIVE 0.1 0.0% 99.4%
TERRAN_BARRACKSTECHLAB 0.7 0.3% 91.5% ZERG_LURKERMPBURROWED 0.1 0.0% 99.4%
TERRAN_ENGINEERINGBAY 0.7 0.3% 91.8% PROTOSS_ROBOTICSBAY 0.1 0.0% 99.4%
TERRAN_SIEGETANKSIEGED 0.7 0.3% 92.1% TERRAN_FACTORYFLYING 0.1 0.0% 99.5%

Table 6. Results for the Unit Identification Benchmarks.

Model \ Placement oracle grid random quasi diag1 diag2 oracle grid random quasi diag1 diag2 oracle grid random quasi diag1 diag2
unet_resnet18 0.087 0.255 0.355 0.257 1.155 0.948 56.0% 37.8% 28.0% 35.2% 9.3% 17.7% 0.172 0.119 0.094 0.111 0.050 0.074
unet_resnet34 0.078 0.257 0.370 0.262 1.087 0.852 55.2% 34.1% 27.9% 33.9% 9.3% 17.8% 0.159 0.095 0.097 0.103 0.051 0.075
unet_squeezenet1_0 0.161 0.291 0.380 0.227 1.170 1.308 49.3% 30.0% 22.6% 32.5% 8.8% 16.7% 0.126 0.081 0.062 0.103 0.045 0.068
unet_squeezenet1_1 0.086 0.288 0.315 0.254 1.060 1.106 49.3% 29.1% 24.6% 29.9% 8.3% 15.2% 0.136 0.078 0.078 0.086 0.042 0.058
unet_xresnet18 0.076 0.261 0.316 0.269 1.318 1.030 56.3% 37.3% 25.0% 35.8% 9.5% 18.1% 0.169 0.111 0.073 0.115 0.051 0.080
unet_xresnet34 0.083 0.244 0.331 0.235 1.256 0.984 56.5% 38.7% 27.8% 32.8% 9.6% 18.2% 0.173 0.125 0.085 0.094 0.052 0.079
Average over models 0.095 0.266 0.344 0.251 1.175 1.038 53.8% 34.5% 26.0% 33.4% 9.1% 17.3% 0.156 0.102 0.081 0.102 0.048 0.072

Cross Entropy Unit Accuracy (ignoring non-units) Multi-class Dice

Table 7. Results for the Next Hyperspectral Window Prediction Benchmarks.

Model \ Placement oracle grid random quasi diag1 diag2 oracle grid random quasi diag1 diag2
unet_resnet18 3.85 3.84 3.91 3.88 4.12 4.03 15.0% 17.1% 15.4% 15.9% 9.7% 12.8%
unet_resnet34 3.85 3.86 3.92 3.89 4.12 4.04 16.2% 13.1% 15.0% 15.7% 9.6% 11.9%
unet_resnet50 3.71 3.84 3.91 3.87 4.14 4.06 16.6% 15.6% 15.8% 17.0% 16.6% 16.5%
unet_resnext50_32x4d 3.83 3.87 3.93 3.85 4.12 4.05 16.5% 15.5% 15.9% 17.1% 8.1% 11.4%
Average over models 3.81 3.85 3.92 3.87 4.13 4.05 16.1% 15.3% 15.5% 16.4% 11.0% 13.1%

Model \ Placement oracle grid random quasi diag1 diag2 oracle grid random quasi diag1 diag2
unet_resnet18 60.6% 68.9% 65.8% 62.3% 43.3% 54.0% 55.6% 46.7% 40.8% 47.8% 27.8% 31.5%
unet_resnet34 59.7% 57.4% 63.4% 60.0% 45.8% 52.3% 58.3% 47.5% 42.6% 44.1% 31.4% 33.2%
unet_resnet50 62.3% 67.2% 65.3% 68.0% 45.6% 51.3% 58.0% 46.9% 42.6% 46.4% 29.7% 30.6%
unet_resnext50_32x4d 60.4% 65.5% 69.0% 65.3% 43.5% 52.3% 58.6% 46.0% 39.6% 52.7% 17.3% 23.3%
Average over models 60.8% 64.8% 65.9% 63.9% 44.6% 52.5% 57.6% 46.8% 41.4% 47.7% 26.5% 29.7%

MSE FPR (nonzero is "positive", zero is "negative")

TPR(+) (positive diff is "positive") TPR(-) (negative diff is "positive")

Figure 13. 10 random samples from each class (where each row is its own class), from the map name + is begining or end 10-way
class split. The class label to variable information mapping is as follows: Class 0=(’Acolyte LE’, ’Beginning’), Class 1=(’Acolyte
LE’, ’End’), Class 2=(’Abyssal Reef LE’, ’Beginning’), Class 3=(’Abyssal Reef LE’, ’End’), Class 4=(’Ascension to Aiur LE’, ’Be-
ginning’), Class 5=(’Ascension to Aiur LE’, ’End’), Class 6=(’Mech Depot LE’, ’Beginning’), Class 7=(’Mech Depot LE’, ’End’),
Class 8=(’Odyssey LE’, ’Beginning’), Class 9=(’Odyssey LE’, ’End’)).

Input windows True windows Pred windows

Figure 14. Five examples from the VAEImputer model trained to
denoise an imputed corrupted aerial image (where in this case an
occlusion with a 5px radius has been simulated). As can be seen.
Note, the difference in colorization between the input windows
and true windows is simply due to plotting renormalization due to
the occlusion.

Input windows True windows Pred windows

Figure 15. Five examples from the ResNet-101 model [15] trained
to identify the owner of each unit in a window, where this task
is akin to an image colorization task where each owner (Player1,
Neutral, Player2) is placed on a separate channel. As can be seen
in the examples here, it is difficult at times for the model to de-
termine the difference between Player 1 and Player 2 due to both
players having random starting corners of the map.

	. Dataset Availability, Licensing, and Management
	. Direct Loading of Window Data
	. Broader Impact
	. Metadata Description and Suggested Classwise Splits
	. Metadata Description
	. Splitting dataset to k Classes

	. Benchmark Evaluations On Multi-Agent Spatial Reasoning Tasks
	. Unit Type Identification
	. Next Hyperspectral Window Prediction

	. Additional Demonstrations of ML tasks on the StarCraftImage Dataset

