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Appendix

A. COCO test results

We also evaluate our HAAV using an ensemble of four
models same as other methods on the online MS-COCO test
server, and report the results in Table 1. We can see that
our HAAV outperforms previous methods by a large margin
across all metrics.

B. Overfitting

Training a data-hungry transformer model on a medium-
scale dataset of MS-COCO (around 0.6M training samples)
is prone to overfitting. In HAAV, we propose to regard het-
erogeneous views as augmentations of the input image and
encode the views independently with a shared encoder. We
claim that this formulation increases data diversity and is
more parameter and label-efficient. Furthermore, we add a
contrastive loss to improve representation quality of encoded
views, which is also beneficial for label efficiency. In Fig-
ure 1, we show the validation curve for concatenated views
and HAAV. Compared to concatenated views, our HAAV
indeed suffers less from overfitting. Due to overfitting, the
CIDEr score of concatenated views drops by 3.6 from the
highest to the end of training.
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Figure 1. CIDEr validation curve of HAAV v.s. concatenated views.

C. Implementation Details

We provide a detailed list of hyperparameters including
their values and whether they are tuned in Table 2 (cross-
entropy training) and Table 3 (SCST training). For cross-
entropy training, the model can be trained with a single
Nvidia 2080 Ti GPU in 2 days. For SCST training, the model
can be trained with a single Nvidia A40 GPUs in 4 days.

Table 1. MS-COCO test server results

B-1 B-2 B-3 B-4 M R C
Method c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

SCST [8] 78.1 93.7 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7
Up-Down [1] 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
AoANet [3] 81.0 95.0 65.8 89.6 51.4 81.3 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6
M2 [2] 81.6 96.0 66.4 90.8 51.8 82.7 39.7 72.8 29.4 39.0 59.2 74.8 129.3 132.1

X-LAN [7] 81.9 95.7 66.9 90.5 52.4 82.5 40.3 72.4 29.6 39.2 59.5 75.0 131.1 133.5
DLCT [6] 82.4 96.6 67.4 91.7 52.8 83.8 40.6 74.0 29.8 39.6 59.8 75.3 133.3 135.4

HAAV (ours) 84.0 97.6 69.1 93.3 54.3 85.8 41.7 76.1 30.2 39.9 60.4 75.8 139.1 142.3
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Table 2. Hyperparameters for cross-entropy training. The values for untuned parameters are inherited from the base image captioning model,
Xmodal-Ctx [4].

Hyperparameter Value Tuned Note

N 3 Number of encoder layers
M 3 Number of decoder layers
lr 2e-5 ✓ learning rate
bs 50 batch size
wd 0.05 weight decay
λ 0.05 ✓ loss weight for Lcon

pc 0.1 drop rate for channel-wise dropout
ps 0.1 drop rate for sequence-wise dropout
pv 0.1 drop rate for view-wise dropout
optimizer AdamW Adam with decoupled weight decay [5]

lr scheduler
constant with
linear warmup

linearly warm up lr from 0.0,
and then stay constant

warmup steps 10k

K 8k ✓
size of memory buffer
for MoCo contrastive learning

τ 0.06 ✓
temperature scaling
for MoCo contrastive learning

ema 0.999
exponential moving avergae
for MoCo contrastive learning

Table 3. Hyperparameters for SCST [8] training. The values for untuned parameters are inherited from the base image captioning model,
Xmodal-Ctx [4], or from the tuned value in cross-entropy training.

Hyperparameter Value Tuned Note

N 3 Number of encoder layers
M 3 Number of decoder layers
lr 5e-6 learning rate
bs 40 batch size
wd 0.0 weight decay
λ 0.2 ✓ loss weight for Lcon

pc 0.1 drop rate for channel-wise dropout
ps 0.1 drop rate for sequence-wise dropout
pv 0.1 drop rate for view-wise dropout
optimizer AdamW Adam with decoupled weight decay [5]
lr scheduler None do not use any lr scheduler

K 8k ✓
size of memory buffer
for MoCo contrastive learning

τ 0.06 ✓
temperature scaling
for MoCo contrastive learning

ema 0.999
exponential moving avergae
for MoCo contrastive learning



D. Generated Captions
In Figure 2, we show some random examples of different

captions generated by our HAAV and another trained-from-
scratch SoTA method Xmodal-Ctx [4]. Qualitatively, HAAV
is capable of generating captions in more details and more
closely related to the input image rather than generating a
generic sentence. For example, in Figure 2a, HAAV gener-
ates “a man standing in a living room holding a nintendo
wii game controller”, while Xmodal-Ctx generates a more
generic description of “a group of people sitting on a couch
playing a video game”. Another example in Figure 2e shows
that HAAV describes the train in more details as “a yellow
and purple train” rather than just “a train” by Xmodal-Ctx.

E. Adaptive View Aggregation Weights
We show more examples of how the hierarchical decoder

adaptively weighs the encoded views according to their ef-
fectiveness for caption generation at the view level and at
the word level in Figure 3-8.

At the view level (figures on the left), we add noise to a
view by randomly zeroing out tokens in a view to make a
view less effective, and expect a drop of weights toward that
noised view. To measure the weights, we take the multi-head
attention weights of CrossAttnLv2 at the last decoder layer

and average the attention weights across heads. Overall, the
weights for the noised view drop consistently at each word
prediction step compared to the same view without added
noise. This means that our hierarchical decoder indeed learns
to adaptively weigh the views according to their effectiveness
at the view level.

At the word level (figures on the right), we randomly mask
out a prominent region of the input image for a view, and
expect a drop of the weights toward the masked view at the
step of generating the word of that masked region. To mea-
sure the weights, we take the multi-head attention weights of
CrossAttnLv2 at the last decoder layer and measure the atten-
tion weights of each head at the step of generating the word
of that masked region. Overall, the weights for the masked
view drops consistently across all attention heads compared
to the same view without masking. This means that our
hierarchical decoder indeed learns to adaptively weigh the
input views according to their usefulness at the word level.

(a)
HAAV: a man standing in a living room
holding a nintendo wii game controller
Xmodal-Ctx: a group of people sitting on
a couch playing a video game

(b)
HAAV: a batter catcher and umpire
during a baseball game
Xmodal-Ctx: a baseball player
holding a bat on a field

(c)
HAAV: a bunch of umbrellas
hanging from a ceiling
Xmodal-Ctx: a bunch of flowers
hanging from a ceiling

(d)
HAAV: two people playing a video
game in a room
Xmodal-Ctx: a person standing in
front of a tv

(e)
HAAV: a yellow and purple train
parked at a train station
Xmodal-Ctx: a train that is sitting on
the tracks

(f)
HAAV: a piece of cake on a plate with
a flower
Xmodal-Ctx: a slice of cake on a
plate with a fork

(g)
HAAV: a building with a clock tower
in the middle of it
Xmodal-Ctx: a large building with a
clock on the side of it

(h)
HAAV: a bowl of soup with vegeta-
bles and noodles
Xmodal-Ctx: a bowl of soup sitting
on top of a table

Figure 2. Captions generated by HAAV and another trained-from-scratch SoTA method Xmodal-Ctx [4]
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Figure 3. (left) The attention weights averaged across different attention heads for a noised view drop consistently at each caption generation
step. (center) Input image with caption: “two cats inside a window looking at a squirrel outside the window”. (right) The attention weights
of different attention heads drop consistently at the step of generating the word “squirrel”, which is masked out in the input image.
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Figure 4. (left) The attention weights averaged across different attention heads for a noised view drop consistently at each caption generation
step. (center) Input image with caption: “a man is riding a red motorcycle and some buildings”. (right) The attention weights of different
attention heads drop consistently at the step of generating the word “man”, which is masked out in the input image.
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Figure 5. (left) The attention weights averaged across different attention heads for a noised view drop consistently at each caption generation
step. (center) Input image with caption: “a dinner plate knife and fork with carrots potatoes and meat on the plate”. (right) The attention
weights of different attention heads drop consistently at the step of generating the word “knife”, which is masked out in the input image.
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Figure 6. (left) The attention weights averaged across different attention heads for a noised view drop consistently at each caption generation
step. (center) Input image with caption: “a man flying into the air while riding a skateboard”. (right) The attention weights of different
attention heads drop consistently at the step of generating the word “skateboard”, which is masked out in the input image.
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Figure 7. (left) The attention weights averaged across different attention heads for a noised view drop consistently at each caption generation
step. (center) Input image with caption: “cat standing in toilet next to a tile floor”. (right) The attention weights of different attention heads
drop consistently at the step of generating the word “cat”, which is masked out in the input image.
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Figure 8. (left) The attention weights averaged across different attention heads for a noised view drop consistently at each caption generation
step. (center) Input image with caption: “a train rolls down the tracks at the train station”. (right) The attention weights of different
attention heads drop consistently at the step of generating the word “train”, which is masked out in the input image.
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