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A. Implementation Details
A.1. Network Architecture
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Figure A1. Visualization of the Reconstructor Encoder. We aggre-
gate the feature maps from multiple different layers into a multi-
scale feature map X.

The proposed framework has two networks: a classifier
F and a reconstructor G. We employ the ResNet38 [£] as
the backbone for the classifier, as in many other WSSS stud-
ies [2,3,5-7,10,11]. We add a 1x 1 convolution layer to the
backbone, as a classification head for acquiring CAMs.

We visualize the architecture of the reconstructor en-
coder G in Fig. Al. Similar to the classifier, we employ
ResNet38 as a backbone for the encoder. Here, for better re-
construction capability, we aggregate the feature maps from
multiple different layers into a multi-scale feature map. We
add 1x 1 convolution layers for integrating the feature maps.
The feature X in the main paper denotes this multi-scale
feature map, where the dimension d is set to 448. This de-
sign enables the encoder to extract both primitive details
from low-level and context information from high-level.

Table Al. Dimensions of the output feature obtained by each block
of our reconstructor decoder. For example, the output of the D1
block has a dimension of 64 x 128 x 128. Note that the final
output (of C block) is a reconstructed RGB image, and thereby
has 3 x 256 x 256 dimension.

Blocks | Input | D1 D2 D3 D4 D5 | D6 | D7 D8

Channel | 448 64 128 | 256 | 512 | 512 | 512 | 512 | 512
Size 256 128 64 32 16 8 4 2 1

Blocks - u7 U6 U5 U4 | U3 | U2 | Ul C
Channel - 1024 | 1024 | 1024 | 1024 | 512 | 256 | 128 3
Size - 2 4 8 16 32 | 64 | 128 | 256

Reconstructor Decoder 1y

Skip connections

Recon. I
Image

Figure A2. Visualization of the UNet-based Reconstructor De-
coder. The decoder gets upscaled feature X and returns the recon-
structed image I. D, U, and C denote the Downsample, Upsample,
and Colorization blocks, respectively.

For the reconstructor decoder Gp, we devise a UNet-
based architecture, as shown in Fig. A2. Note that we up-
scale the feature X into the size of the input image, be-
fore passing it to the decoder. The decoder is composed of
eight downsample (D) blocks, seven upsample (U) blocks,
and one colorization (C) block. Each downsample block is
a 4x4 convolutional layer with a stride of 2 followed by
a normalization layer and leakyReLU (LReLU) activation.
On the other hand, each upsample block has 4 x4 trans-
posed convolutional layer with a stride of 2. Similar to the
downsample block, we also use the normalization layer and
LReLU activation. Finally, the colorization block is com-
posed of a 2x bilinear upsample followed by a 1x1 con-
volutional layer for obtaining the output having 3 channels
(RGB). For reproducibility, we provide the dimensions of
the feature obtained by each block in Table Al.
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Table A2. Ablation study on probability q. The mIoU performance
on the PASCAL VOC 2012 train set is listed.

q 0.60 | 0.65 | 0.70 | 0.75 | 0.80 | 0.85 | 0.90
mloU | 59.7 | 59.6 | 59.6 | 60.1 | 60.3 | 60.3 | 60.0

A.2. Details on Stochastic Remnant Feeding (SRF)

As described in Section 4.2.2 of the main paper, we de-
vise a Stochastic Remnant Feeding (SRF) technique. It aims
to prevent the over-fitting of the reconstruction network, by
feeding the synthetic remnants obtained by a stochastic grid.
The stochastic grid is a random binary grid g € [0, 1]2*%
composed of s x s cells. Each % X *2 size cell has a value
of 0 or 1, sampled from the Bernoulli distribution, which is
independent and identical, having the probability of q.

For the number of cells s, we use an integer sampled
from the uniform distribution in the range of 16 to 24, as
§ ~ Ul16,24)- The sampling is performed in every iteration.
We have adjusted the range of sampling, however, no mean-
ingful increase in performance is observed.

For the probability of the Bernoulli distribution, we set
the initial value of ¢ as 0.8. Note that it means that 80% of
the grid has a value of 1, and the other 20% has 0. At the
early stage of learning, the reconstructor is not very spe-
cialized in using the remnants for inferring one segment
from the other. Therefore, we initially set ¢ as a value high
enough, which can be interpreted as giving an easy prob-
lem for the reconstructor to solve. Then, we decrease the
probability as training proceeds (1% per epoch). Similar to
curriculum learning, the reconstructor is trained to solve a
more difficult problem as training proceeds and to better ex-
ploit the remnants for reconstructing one segment from the
other segment, as we intended. We experimentally verified
that using this strategy provides around 1% gain. We also
provide the mIoU performance achieved by using the vari-
ous different initial values for ¢, as in Table. A2. The results
support the robustness of the proposed SRF strategy against
the change of the probability g.

A.3. Settings for MS COCO dataset

Training CAMs Our framework is trained on MS COCO
dataset for 3 epochs, which took a day with a single RTX
3090 ti. The weighting parameters AV and AV are
equally set to 0.2. For the AV and A\SU, we set the val-
ues to 0.3 and 0.2, respectively. The learning rate and batch

size for COCO are set to 0.005 and 8, respectively.
Training Semantic Segmentation For the training of the
semantic segmentation model, we used a smaller learning
rate (5x10~%) than in training the CAMs. We trained the
model with 30 epochs using the obtained pseudo-labels of
81k train set. The weight decay and batch size are set to
5x107° and 8, respectively.

B. Incorporating with Transformer

Recently, due to its remarkable representation capabil-
ity, Vision Transformer (ViT) [4] is widely used in various
computer vision tasks, including WSSS. For a fair compar-
ison with the ViT-based method [9], we further incorporate
the proposed method with the ViT.

Our original implementation is based on the conven-
tional convolutional neural network (CNN). However, the
proposed philosophy (i.e., adversarial learning of classifier
and reconstructor) does not have an explicit limitation on its
choice of backbones. As in MCTformerV2 [9], we refine
the CAM obtained by the proposed method, using attention
between the patch tokens. Note that we use the same recon-
structor with our CNN-based implementation. We provide
the quantitative evaluation of this incorporated version, de-
noted as Ours (+ViT), in the main paper. This setting still
outperforms its baseline (MCTformerV2 [9]) even when us-
ing the ViT backbone, supporting the superiority of the pro-
posed method. We show some CAMs (Fig. A3) and seman-
tic segmentation results (Fig. A4) of Ours (+ViT), compar-
ing with those of the MCTformerV2.

C. Results on PASCAL VOC

CAMs In Fig. A5, we show the CAMs obtained by our
framework, which were omitted from the main paper due
to page limit. The image samples are from PASCAL VOC
2012 train set. As we can refer from Fig. A5, the CAMs
from our proposed method are not only precise but also
more evenly distributed.

Reconstructed Images In Fig. A6, we provide some sam-
ples of the reconstructed images obtained by our frame-
work, in addition to the target/non-target CAMs and bi-
nary grid for SRF. In detail, we visualize the reconstructed
images from RU phase (ifw, iEtU) and CU phase (itCU,
iTCLtU). As we can observe ifU, in RU phase, the reconstruc-
tor could reconstruct the non-target regions with the help
of the remnants, and so on for IV, On the other hand,
in CU phase, we can observe that the reconstructor failed
to reconstruct the original image corresponding to the non-
target regions as shown in itCU Similarly, igtU shows that
the reconstructor failed to reconstruct the target region. The
results imply that the classifier and the reconstructor in our
framework play their role as we intended.

Semantic Segmentation By applying IRN [1] to CAMs as
previous WSSS methods, we acquired high-quality pseudo-
labels with SoTA performance. After training the seman-
tic segmentation with the pseudo-labels, we also achieve a
new SOTA in semantic segmentation stage with only image-
level supervision. Semantic segmentation results on PAS-
CAL VOC 2012 val set are shown in Fig. A7. The mloU
performance on test set is shown here .

Uhttp://host.robots.ox.ac.uk:8080/anonymous/ZQKP1X.html
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D. Results on MS COCO

CAMs To show the superiority of the proposed method, we
also conduct experiments on MS COCO dataset. Since the
MS COCO dataset contains more classes and smaller ob-
jects than PASCAL VOC, it is more difficult to get precise
CAMs/pseudo-labels. However, as shown in Fig A8, CAMs
from the proposed method are not only precise but also cap-
ture small details (see the last row of Fig. A8, backpack)
well. Also, as shown in the 4-6t" row of Fig. A8, the CAMs
are mutually exclusive while having accurate boundaries.
Semantic Segmentation As in PASCAL VOC, we obtained
pseudo-labels by applying IRN [1] to CAMs. The mloU of
the pseudo-labels is 48.1% on 81k train set. The semantic
segmentation model trained with the pseudo-labels achieves
a new SoTA with 45.3% mloU on 40k val set. Semantic
segmentation results are also shown in Fig. A9.
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Figure A4. Semantic segmentation results on PASCAL VOC 2012 train set. From (a) to (d): images, results of MCTformerV2 [9], results
of Our(+ViT), and GTs.
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