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A. Implementation Details
A.1. Network Architecture

Figure A1. Visualization of the Reconstructor Encoder. We aggre-
gate the feature maps from multiple different layers into a multi-
scale feature map X.

The proposed framework has two networks: a classifier
F and a reconstructor G. We employ the ResNet38 [8] as
the backbone for the classifier, as in many other WSSS stud-
ies [2,3,5–7,10,11]. We add a 1×1 convolution layer to the
backbone, as a classification head for acquiring CAMs.

We visualize the architecture of the reconstructor en-
coder GE in Fig. A1. Similar to the classifier, we employ
ResNet38 as a backbone for the encoder. Here, for better re-
construction capability, we aggregate the feature maps from
multiple different layers into a multi-scale feature map. We
add 1×1 convolution layers for integrating the feature maps.
The feature X in the main paper denotes this multi-scale
feature map, where the dimension d is set to 448. This de-
sign enables the encoder to extract both primitive details
from low-level and context information from high-level.

Table A1. Dimensions of the output feature obtained by each block
of our reconstructor decoder. For example, the output of the D1
block has a dimension of 64 × 128 × 128. Note that the final
output (of C block) is a reconstructed RGB image, and thereby
has 3× 256× 256 dimension.

Blocks Input D1 D2 D3 D4 D5 D6 D7 D8
Channel 448 64 128 256 512 512 512 512 512

Size 256 128 64 32 16 8 4 2 1
Blocks - U7 U6 U5 U4 U3 U2 U1 C

Channel - 1024 1024 1024 1024 512 256 128 3
Size - 2 4 8 16 32 64 128 256

Figure A2. Visualization of the UNet-based Reconstructor De-
coder. The decoder gets upscaled feature X and returns the recon-
structed image Î. D, U, and C denote the Downsample, Upsample,
and Colorization blocks, respectively.

For the reconstructor decoder GD, we devise a UNet-
based architecture, as shown in Fig. A2. Note that we up-
scale the feature X into the size of the input image, be-
fore passing it to the decoder. The decoder is composed of
eight downsample (D) blocks, seven upsample (U) blocks,
and one colorization (C) block. Each downsample block is
a 4×4 convolutional layer with a stride of 2 followed by
a normalization layer and leakyReLU (LReLU) activation.
On the other hand, each upsample block has 4×4 trans-
posed convolutional layer with a stride of 2. Similar to the
downsample block, we also use the normalization layer and
LReLU activation. Finally, the colorization block is com-
posed of a 2× bilinear upsample followed by a 1×1 con-
volutional layer for obtaining the output having 3 channels
(RGB). For reproducibility, we provide the dimensions of
the feature obtained by each block in Table A1.
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Table A2. Ablation study on probability q. The mIoU performance
on the PASCAL VOC 2012 train set is listed.

q 0.60 0.65 0.70 0.75 0.80 0.85 0.90
mIoU 59.7 59.6 59.6 60.1 60.3 60.3 60.0

A.2. Details on Stochastic Remnant Feeding (SRF)

As described in Section 4.2.2 of the main paper, we de-
vise a Stochastic Remnant Feeding (SRF) technique. It aims
to prevent the over-fitting of the reconstruction network, by
feeding the synthetic remnants obtained by a stochastic grid.
The stochastic grid is a random binary grid g ∈ [0, 1]h×w

composed of s × s cells. Each h
s × w

s size cell has a value
of 0 or 1, sampled from the Bernoulli distribution, which is
independent and identical, having the probability of q.

For the number of cells s, we use an integer sampled
from the uniform distribution in the range of 16 to 24, as
s ∼ U[16,24]. The sampling is performed in every iteration.
We have adjusted the range of sampling, however, no mean-
ingful increase in performance is observed.

For the probability of the Bernoulli distribution, we set
the initial value of q as 0.8. Note that it means that 80% of
the grid has a value of 1, and the other 20% has 0. At the
early stage of learning, the reconstructor is not very spe-
cialized in using the remnants for inferring one segment
from the other. Therefore, we initially set q as a value high
enough, which can be interpreted as giving an easy prob-
lem for the reconstructor to solve. Then, we decrease the
probability as training proceeds (1% per epoch). Similar to
curriculum learning, the reconstructor is trained to solve a
more difficult problem as training proceeds and to better ex-
ploit the remnants for reconstructing one segment from the
other segment, as we intended. We experimentally verified
that using this strategy provides around 1% gain. We also
provide the mIoU performance achieved by using the vari-
ous different initial values for q, as in Table. A2. The results
support the robustness of the proposed SRF strategy against
the change of the probability q.

A.3. Settings for MS COCO dataset

Training CAMs Our framework is trained on MS COCO
dataset for 3 epochs, which took a day with a single RTX
3090 ti. The weighting parameters λRU

t and λRU
nt are

equally set to 0.2. For the λCU
t and λCU

nt , we set the val-
ues to 0.3 and 0.2, respectively. The learning rate and batch
size for COCO are set to 0.005 and 8, respectively.
Training Semantic Segmentation For the training of the
semantic segmentation model, we used a smaller learning
rate (5×10−4) than in training the CAMs. We trained the
model with 30 epochs using the obtained pseudo-labels of
81k train set. The weight decay and batch size are set to
5×10−5 and 8, respectively.

B. Incorporating with Transformer
Recently, due to its remarkable representation capabil-

ity, Vision Transformer (ViT) [4] is widely used in various
computer vision tasks, including WSSS. For a fair compar-
ison with the ViT-based method [9], we further incorporate
the proposed method with the ViT.

Our original implementation is based on the conven-
tional convolutional neural network (CNN). However, the
proposed philosophy (i.e., adversarial learning of classifier
and reconstructor) does not have an explicit limitation on its
choice of backbones. As in MCTformerV2 [9], we refine
the CAM obtained by the proposed method, using attention
between the patch tokens. Note that we use the same recon-
structor with our CNN-based implementation. We provide
the quantitative evaluation of this incorporated version, de-
noted as Ours (+ViT), in the main paper. This setting still
outperforms its baseline (MCTformerV2 [9]) even when us-
ing the ViT backbone, supporting the superiority of the pro-
posed method. We show some CAMs (Fig. A3) and seman-
tic segmentation results (Fig. A4) of Ours (+ViT), compar-
ing with those of the MCTformerV2.

C. Results on PASCAL VOC
CAMs In Fig. A5, we show the CAMs obtained by our
framework, which were omitted from the main paper due
to page limit. The image samples are from PASCAL VOC
2012 train set. As we can refer from Fig. A5, the CAMs
from our proposed method are not only precise but also
more evenly distributed.
Reconstructed Images In Fig. A6, we provide some sam-
ples of the reconstructed images obtained by our frame-
work, in addition to the target/non-target CAMs and bi-
nary grid for SRF. In detail, we visualize the reconstructed
images from RU phase (ÎRU

t , ÎRU
nt ) and CU phase (ÎCU

t ,
ÎCU
nt ). As we can observe ÎRU

t , in RU phase, the reconstruc-
tor could reconstruct the non-target regions with the help
of the remnants, and so on for ÎRU

nt . On the other hand,
in CU phase, we can observe that the reconstructor failed
to reconstruct the original image corresponding to the non-
target regions as shown in ÎCU

t . Similarly, ÎCU
nt shows that

the reconstructor failed to reconstruct the target region. The
results imply that the classifier and the reconstructor in our
framework play their role as we intended.
Semantic Segmentation By applying IRN [1] to CAMs as
previous WSSS methods, we acquired high-quality pseudo-
labels with SoTA performance. After training the seman-
tic segmentation with the pseudo-labels, we also achieve a
new SOTA in semantic segmentation stage with only image-
level supervision. Semantic segmentation results on PAS-
CAL VOC 2012 val set are shown in Fig. A7. The mIoU
performance on test set is shown here 1.

1http://host.robots.ox.ac.uk:8080/anonymous/ZQKP1X.html
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D. Results on MS COCO
CAMs To show the superiority of the proposed method, we
also conduct experiments on MS COCO dataset. Since the
MS COCO dataset contains more classes and smaller ob-
jects than PASCAL VOC, it is more difficult to get precise
CAMs/pseudo-labels. However, as shown in Fig A8, CAMs
from the proposed method are not only precise but also cap-
ture small details (see the last row of Fig. A8, backpack)
well. Also, as shown in the 4-6th row of Fig. A8, the CAMs
are mutually exclusive while having accurate boundaries.
Semantic Segmentation As in PASCAL VOC, we obtained
pseudo-labels by applying IRN [1] to CAMs. The mIoU of
the pseudo-labels is 48.1% on 81k train set. The semantic
segmentation model trained with the pseudo-labels achieves
a new SoTA with 45.3% mIoU on 40k val set. Semantic
segmentation results are also shown in Fig. A9.
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Figure A3. CAMs results on PASCAL VOC 2012 train and trainaug set. From (a) to (d): images, CAMs of MCTformerV2 [9], Our(+ViT)
CAMs, and GTs (if exist). Note that the CAMs of the last raw correspond to the sofa class.
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Figure A4. Semantic segmentation results on PASCAL VOC 2012 train set. From (a) to (d): images, results of MCTformerV2 [9], results
of Our(+ViT), and GTs.
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Figure A5. CAMs results on PASCAL VOC 2012 train set. From (a) to (c): images, our CAMs, and Ground-Truths (GTs).

6



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

CVPR
#5400

CVPR
#5400

CVPR 2023 Submission #5400. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure A6. Samples of reconstructed results on PASCAL VOC 2012 train set. First row, from left to right: input image (I), target CAM
(At), image reconstructed from target feature in RU phase (ÎRU

t ), and image reconstructed from target CAM in CU phase (ÎCU
t ). Second

row, from left to right: binary grid (g) used for SRF, non-target CAM (Ant), image reconstructed from non-target feature in RU phase
(ÎRU

nt ), and image reconstructed from non-target CAM in CU phase (ÎCU
nt ).
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Figure A7. Semantic segmentation results on PASCAL VOC 2012 validation set. From (a) to (c): images, our Deeplab, GTs.
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Figure A8. CAMs results on MS COCO train set. From (a) to (c): images, our CAMs, and Ground-Truths (GTs).
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Figure A9. Semantic segmentation results on MS COCO validation set. From (a) to (c): images, our Deeplab, GTs.
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