

000

054

001

055

002

056

003

057

004

058

005

059

006

060

007

061

008

062

009

063

010

064

011

065

012

066

013

067

014

068

015

069

016

070

017

071

018

072

019

073

020

074

021

075

022

076

023

077

024

078

025

079

026

080

027

081

028

082

029

083

030

084

031

085

032

086

033

087

034

088

035

089

036

090

037

091

038

092

039

093

040

094

041

095

042

096

043

097

044

098

045

099

046

100

047

101

048

102

049

103

050

104

051

105

052

106

053

107

Weakly Supervised Semantic Segmentation via Adversarial Learning of Classifier and Reconstructor: *Supplementary Material*

Anonymous CVPR submission

Paper ID 5400

A. Implementation Details

A.1. Network Architecture

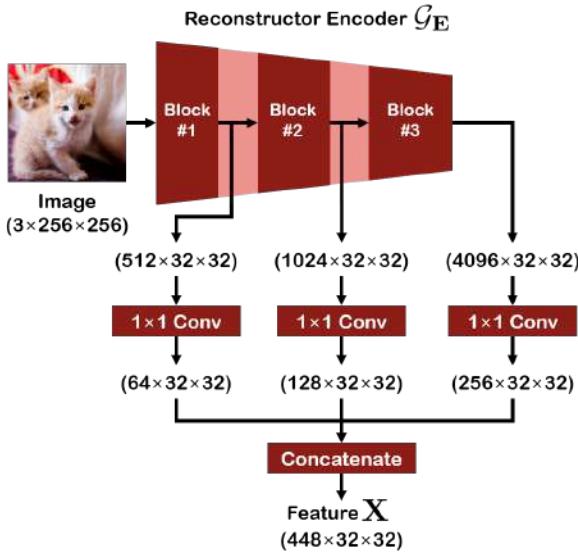


Figure A1. Visualization of the Reconstructor Encoder. We aggregate the feature maps from multiple different layers into a multi-scale feature map \mathbf{X} .

The proposed framework has two networks: a classifier \mathcal{F} and a reconstructor \mathcal{G} . We employ the ResNet38 [8] as the backbone for the classifier, as in many other WSSS studies [2,3,5–7,10,11]. We add a 1×1 convolution layer to the backbone, as a classification head for acquiring CAMs.

We visualize the architecture of the reconstructor encoder \mathcal{G}_E in Fig. A1. Similar to the classifier, we employ ResNet38 as a backbone for the encoder. Here, for better reconstruction capability, we aggregate the feature maps from multiple different layers into a multi-scale feature map. We add 1×1 convolution layers for integrating the feature maps. The feature \mathbf{X} in the main paper denotes this multi-scale feature map, where the dimension d is set to 448. This design enables the encoder to extract both primitive details from low-level and context information from high-level.

Table A1. Dimensions of the output feature obtained by each block of our reconstructor decoder. For example, the output of the D1 block has a dimension of $64 \times 128 \times 128$. Note that the final output (of C block) is a reconstructed RGB image, and thereby has $3 \times 256 \times 256$ dimension.

Blocks	Input	D1	D2	D3	D4	D5	D6	D7	D8
Channel	448	64	128	256	512	512	512	512	512
Size	256	128	64	32	16	8	4	2	1
Blocks	-	U7	U6	U5	U4	U3	U2	U1	C
Channel	-	1024	1024	1024	1024	512	256	128	3
Size	-	2	4	8	16	32	64	128	256

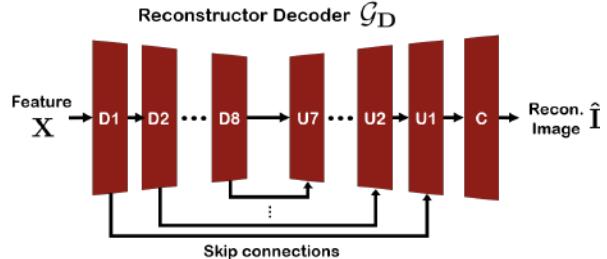


Figure A2. Visualization of the UNet-based Reconstructor Decoder. The decoder gets upscaled feature \mathbf{X} and returns the reconstructed image $\hat{\mathbf{I}}$. \mathbf{D} , \mathbf{U} , and \mathbf{C} denote the Downsample, Upsample, and Colorization blocks, respectively.

For the reconstructor decoder \mathcal{G}_D , we devise a UNet-based architecture, as shown in Fig. A2. Note that we upscale the feature \mathbf{X} into the size of the input image, before passing it to the decoder. The decoder is composed of eight downsample (\mathbf{D}) blocks, seven upsample (\mathbf{U}) blocks, and one colorization (\mathbf{C}) block. Each downsample block is a 4×4 convolutional layer with a stride of 2 followed by a normalization layer and leakyReLU (LReLU) activation. On the other hand, each upsample block has 4×4 transposed convolutional layer with a stride of 2. Similar to the downsample block, we also use the normalization layer and LReLU activation. Finally, the colorization block is composed of a 2×2 bilinear upsample followed by a 1×1 convolutional layer for obtaining the output having 3 channels (RGB). For reproducibility, we provide the dimensions of the feature obtained by each block in Table A1.

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
Table A2. Ablation study on probability q . The mIoU performance
on the PASCAL VOC 2012 train set is listed.

q	0.60	0.65	0.70	0.75	0.80	0.85	0.90
mIoU	59.7	59.6	59.6	60.1	60.3	60.3	60.0

A.2. Details on Stochastic Remnant Feeding (SRF)

As described in Section 4.2.2 of the main paper, we devise a Stochastic Remnant Feeding (SRF) technique. It aims to prevent the over-fitting of the reconstruction network, by feeding the synthetic remnants obtained by a stochastic grid. The stochastic grid is a random binary grid $\mathbf{g} \in [0, 1]^{h \times w}$ composed of $s \times s$ cells. Each $\frac{h}{s} \times \frac{w}{s}$ size cell has a value of 0 or 1, sampled from the Bernoulli distribution, which is independent and identical, having the probability of q .

For the number of cells s , we use an integer sampled from the uniform distribution in the range of 16 to 24, as $s \sim U_{[16, 24]}$. The sampling is performed in every iteration. We have adjusted the range of sampling, however, no meaningful increase in performance is observed.

For the probability of the Bernoulli distribution, we set the initial value of q as 0.8. Note that it means that 80% of the grid has a value of 1, and the other 20% has 0. At the early stage of learning, the reconstructor is not very specialized in using the remnants for inferring one segment from the other. Therefore, we initially set q as a value high enough, which can be interpreted as giving an easy problem for the reconstructor to solve. Then, we decrease the probability as training proceeds (1% per epoch). Similar to curriculum learning, the reconstructor is trained to solve a more difficult problem as training proceeds and to better exploit the remnants for reconstructing one segment from the other segment, as we intended. We experimentally verified that using this strategy provides around 1% gain. We also provide the mIoU performance achieved by using the various different initial values for q , as in Table. A2. The results support the robustness of the proposed SRF strategy against the change of the probability q .

A.3. Settings for MS COCO dataset

Training CAMs Our framework is trained on MS COCO dataset for 3 epochs, which took a day with a single RTX 3090 ti. The weighting parameters λ_t^{RU} and λ_{nt}^{RU} are equally set to 0.2. For the λ_t^{CU} and λ_{nt}^{CU} , we set the values to 0.3 and 0.2, respectively. The learning rate and batch size for COCO are set to 0.005 and 8, respectively.

Training Semantic Segmentation For the training of the semantic segmentation model, we used a smaller learning rate (5×10^{-4}) than in training the CAMs. We trained the model with 30 epochs using the obtained pseudo-labels of 81k *train* set. The weight decay and batch size are set to 5×10^{-5} and 8, respectively.

B. Incorporating with Transformer

Recently, due to its remarkable representation capability, Vision Transformer (ViT) [4] is widely used in various computer vision tasks, including WSSS. For a fair comparison with the ViT-based method [9], we further incorporate the proposed method with the ViT.

Our original implementation is based on the conventional convolutional neural network (CNN). However, the proposed philosophy (*i.e.*, adversarial learning of classifier and reconstructor) does not have an explicit limitation on its choice of backbones. As in MCTformerV2 [9], we refine the CAM obtained by the proposed method, using attention between the patch tokens. Note that we use the same reconstructor with our CNN-based implementation. We provide the quantitative evaluation of this incorporated version, denoted as Ours (+ViT), in the main paper. This setting still outperforms its baseline (MCTformerV2 [9]) even when using the ViT backbone, supporting the superiority of the proposed method. We show some CAMs (Fig. A3) and semantic segmentation results (Fig. A4) of Ours (+ViT), comparing with those of the MCTformerV2.

C. Results on PASCAL VOC

CAMs In Fig. A5, we show the CAMs obtained by our framework, which were omitted from the main paper due to page limit. The image samples are from PASCAL VOC 2012 *train* set. As we can refer from Fig. A5, the CAMs from our proposed method are not only precise but also more evenly distributed.

Reconstructed Images In Fig. A6, we provide some samples of the reconstructed images obtained by our framework, in addition to the target/non-target CAMs and binary grid for SRF. In detail, we visualize the reconstructed images from RU phase ($\hat{\mathbf{I}}_t^{RU}, \hat{\mathbf{I}}_{nt}^{RU}$) and CU phase ($\hat{\mathbf{I}}_t^{CU}, \hat{\mathbf{I}}_{nt}^{CU}$). As we can observe $\hat{\mathbf{I}}_t^{RU}$, in RU phase, the reconstructor could reconstruct the non-target regions with the help of the remnants, and so on for $\hat{\mathbf{I}}_{nt}^{RU}$. On the other hand, in CU phase, we can observe that the reconstructor failed to reconstruct the original image corresponding to the non-target regions as shown in $\hat{\mathbf{I}}_t^{CU}$. Similarly, $\hat{\mathbf{I}}_{nt}^{CU}$ shows that the reconstructor failed to reconstruct the target region. The results imply that the classifier and the reconstructor in our framework play their role as we intended.

Semantic Segmentation By applying IRN [1] to CAMs as previous WSSS methods, we acquired high-quality pseudo-labels with SoTA performance. After training the semantic segmentation with the pseudo-labels, we also achieve a new SOTA in semantic segmentation stage with only image-level supervision. Semantic segmentation results on PASCAL VOC 2012 *val* set are shown in Fig. A7. The mIoU performance on *test* set is shown here¹.

¹<http://host.robots.ox.ac.uk:8080/anonymous/ZQKP1X.html>

216

D. Results on MS COCO

217

CAMs To show the superiority of the proposed method, we also conduct experiments on MS COCO dataset. Since the MS COCO dataset contains more classes and smaller objects than PASCAL VOC, it is more difficult to get precise CAMs/pseudo-labels. However, as shown in Fig A8, CAMs from the proposed method are not only precise but also capture small details (see the last row of Fig. A8, *backpack*) well. Also, as shown in the 4-6th row of Fig. A8, the CAMs are mutually exclusive while having accurate boundaries.

221

Semantic Segmentation As in PASCAL VOC, we obtained pseudo-labels by applying IRN [1] to CAMs. The mIoU of the pseudo-labels is 48.1% on 81k *train* set. The semantic segmentation model trained with the pseudo-labels achieves a new SoTA with 45.3% mIoU on 40k *val* set. Semantic segmentation results are also shown in Fig. A9.

225

References

234

- [1] Jiwoon Ahn, Sunghyun Cho, and Suha Kwak. Weakly supervised learning of instance segmentation with inter-pixel relations. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 2209–2218, 2019. 2, 3
- [2] Jiwoon Ahn and Suha Kwak. Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 4981–4990, 2018. 1
- [3] Yu-Ting Chang, Qiaosong Wang, Wei-Chih Hung, Robinson Piramuthu, Yi-Hsuan Tsai, and Ming-Hsuan Yang. Weakly-supervised semantic segmentation via sub-category exploration. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 8991–9000, 2020. 1
- [4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020. 2
- [5] Hyeokjun Kweon, Sung-Hoon Yoon, Hyeonseong Kim, Daehee Park, and Kuk-Jin Yoon. Unlocking the potential of ordinary classifier: Class-specific adversarial erasing framework for weakly supervised semantic segmentation. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 6994–7003, 2021. 1
- [6] Wataru Shimoda and Keiji Yanai. Self-supervised difference detection for weakly-supervised semantic segmentation. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 5208–5217, 2019. 1
- [7] Yude Wang, Jie Zhang, Meina Kan, Shiguang Shan, and Xilin Chen. Self-supervised equivariant attention mechanism for weakly supervised semantic segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 12275–12284, 2020. 1

- [8] Zifeng Wu, Chunhua Shen, and Anton Van Den Hengel. Wider or deeper: Revisiting the resnet model for visual recognition. *Pattern Recognition*, 90:119–133, 2019. 1
- [9] Lian Xu, Wanli Ouyang, Mohammed Bennamoun, Farid Boussaid, and Dan Xu. Multi-class token transformer for weakly supervised semantic segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 4310–4319, 2022. 2, 4, 5
- [10] Sung-Hoon Yoon, Hyeokjun Kweon, Jegyeong Cho, Shin-jeong Kim, and Kuk-Jin Yoon. Adversarial erasing framework via triplet with gated pyramid pooling layer for weakly supervised semantic segmentation. In *Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXIX*, pages 326–344. Springer Nature Switzerland Cham, 2022. 1
- [11] Bingfeng Zhang, Jimin Xiao, Yunchao Wei, Mingjie Sun, and Kaizhu Huang. Reliability does matter: An end-to-end weakly supervised semantic segmentation approach. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pages 12765–12772, 2020. 1

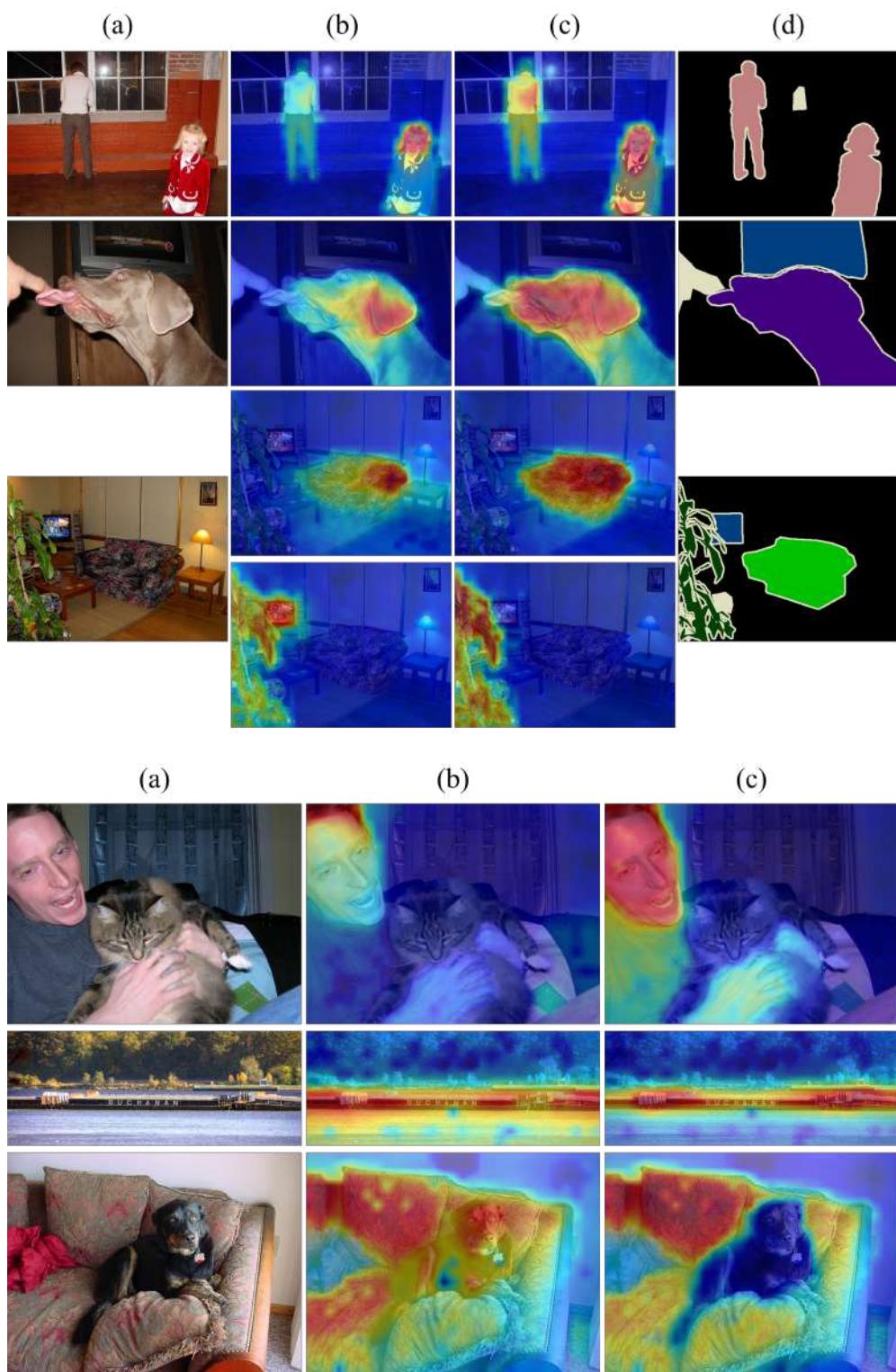
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Figure A3. CAMs results on PASCAL VOC 2012 *train* and *trainaug* set. From (a) to (d): images, CAMs of MCTformerV2 [9], Our(+ViT) CAMs, and GTs (if exist). Note that the CAMs of the last raw correspond to the *sofa* class.

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

432
433
434
435
436
437486
487
488
489
490
491438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

(a)

(b)

(c)

(d)

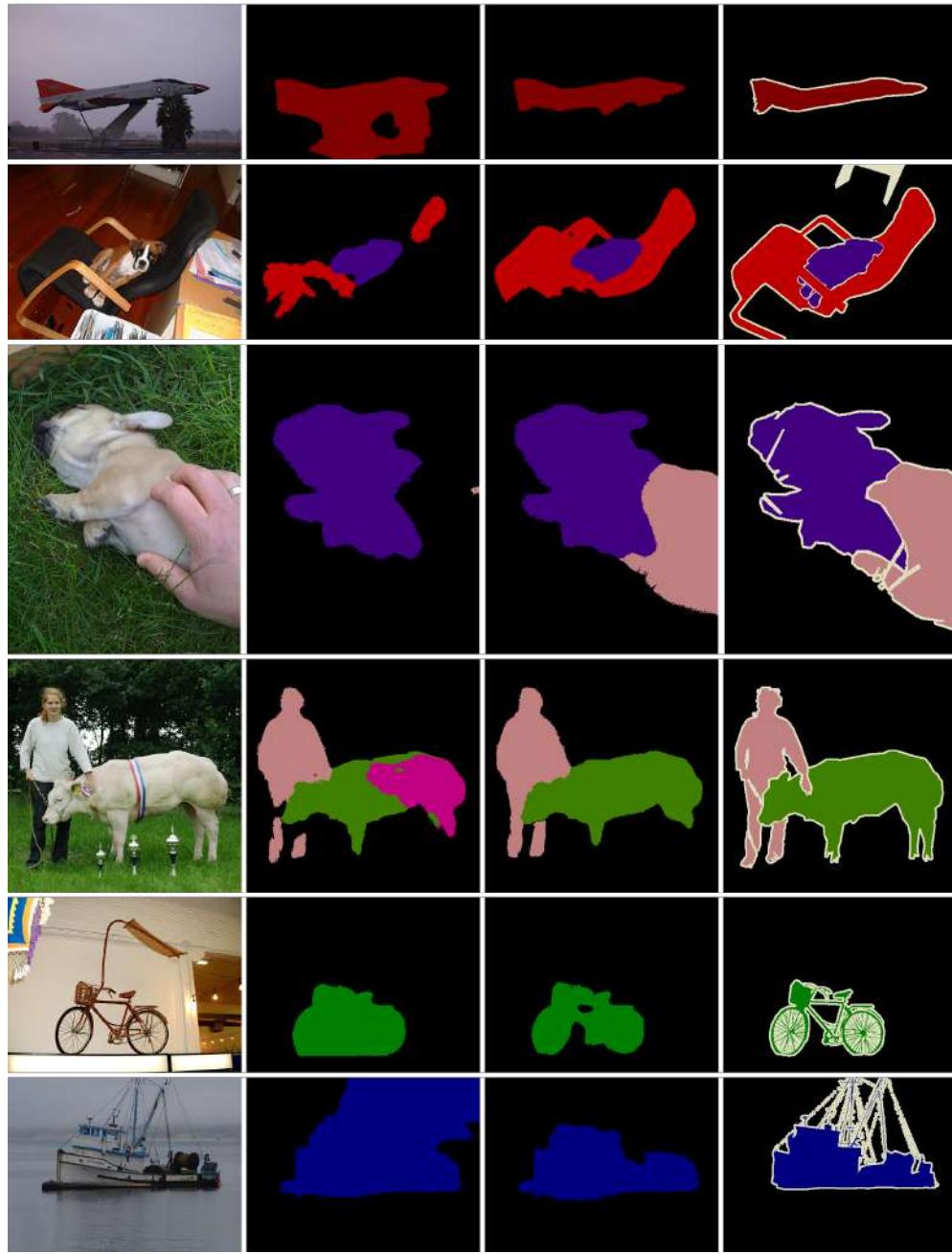


Figure A4. Semantic segmentation results on PASCAL VOC 2012 *train* set. From (a) to (d): images, results of MCTformerV2 [9], results of Our(+ViT), and GTs.

482
483
484
485

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

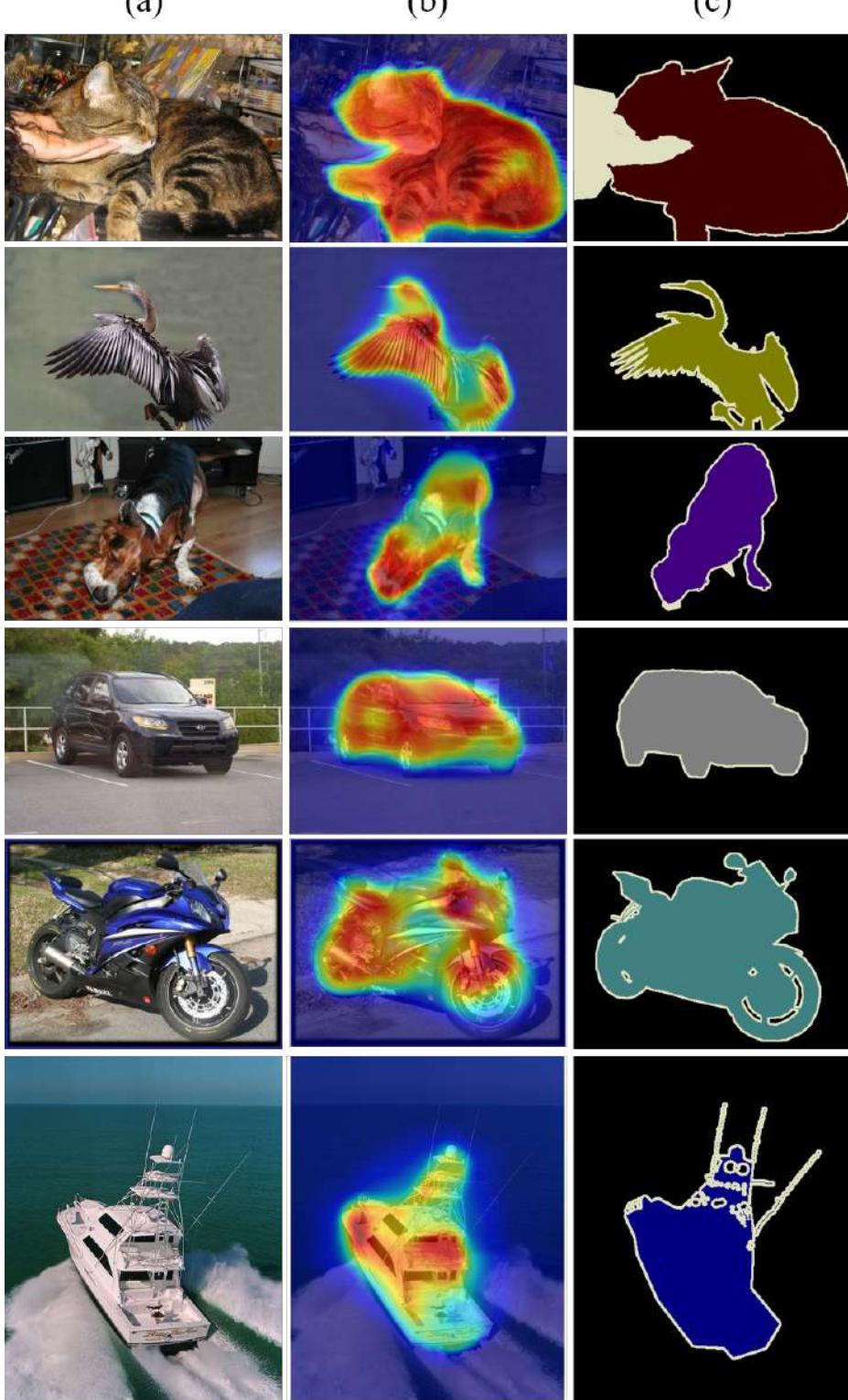
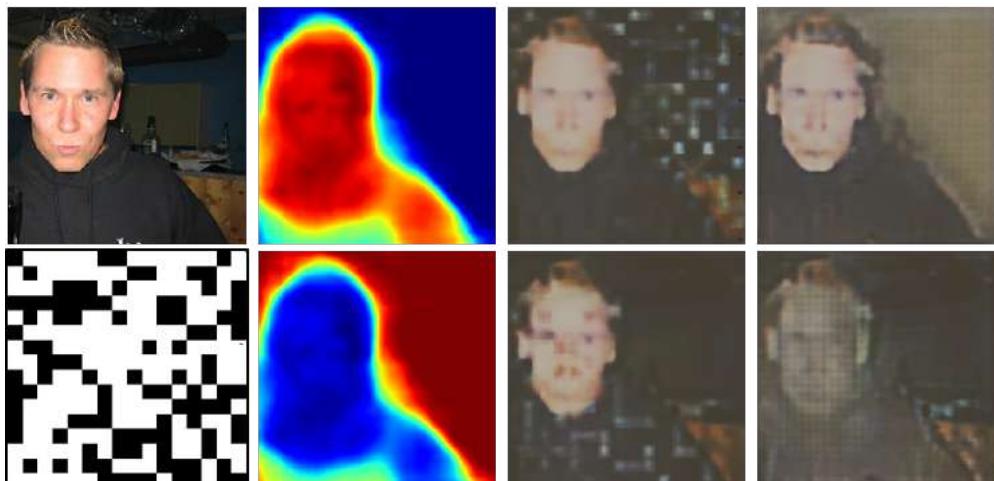
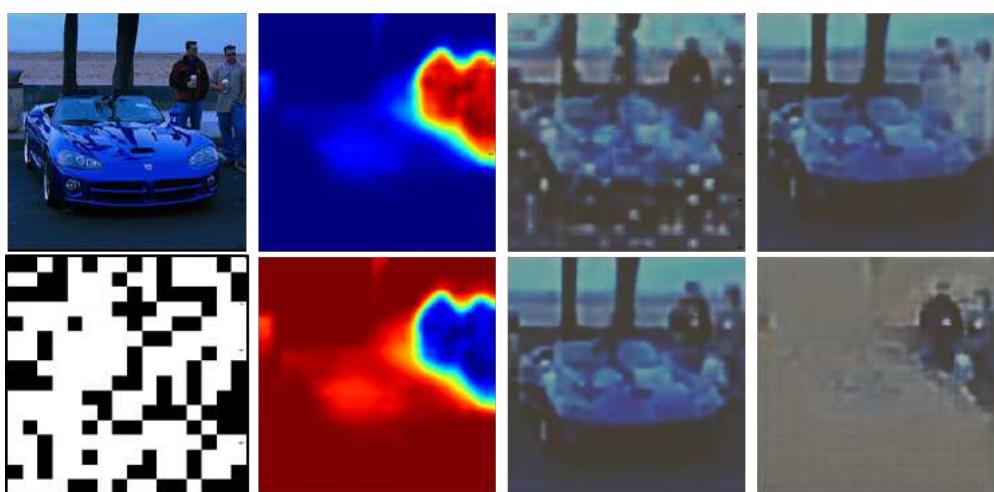


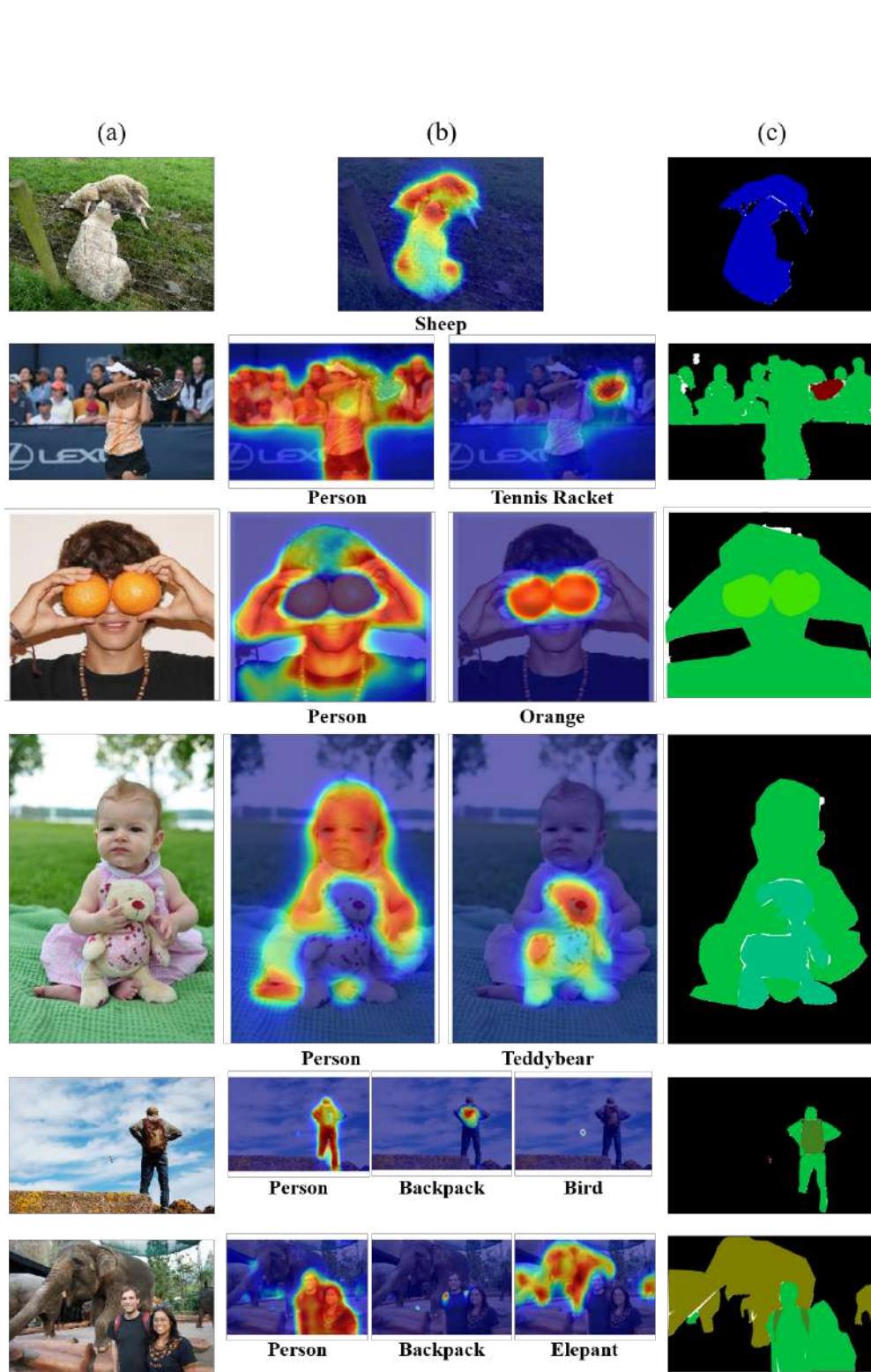
Figure A5. CAMs results on PASCAL VOC 2012 *train* set. From (a) to (c): images, our CAMs, and Ground-Truths (GTs).

648	\mathbf{I}	\mathbf{A}_t	$\hat{\mathbf{I}}_t^{RU}$	$\hat{\mathbf{I}}_t^{CU}$	702
649	g	\mathbf{A}_{nt}	$\hat{\mathbf{I}}_{nt}^{RU}$	$\hat{\mathbf{I}}_{nt}^{CU}$	703



696 Figure A6. Samples of reconstructed results on PASCAL VOC 2012 *train* set. First row, from left to right: input image (\mathbf{I}), target CAM
697 (\mathbf{A}_t), image reconstructed from target feature in RU phase ($\hat{\mathbf{I}}_t^{RU}$), and image reconstructed from target CAM in CU phase ($\hat{\mathbf{I}}_t^{CU}$). Second
698 row, from left to right: binary grid (g) used for SRF, non-target CAM (\mathbf{A}_{nt}), image reconstructed from non-target feature in RU phase
699 ($\hat{\mathbf{I}}_{nt}^{RU}$), and image reconstructed from non-target CAM in CU phase ($\hat{\mathbf{I}}_{nt}^{CU}$).

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863Figure A7. Semantic segmentation results on PASCAL VOC 2012 *validation* set. From (a) to (c): images, our Deeplab, GTs.

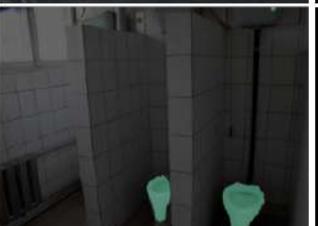
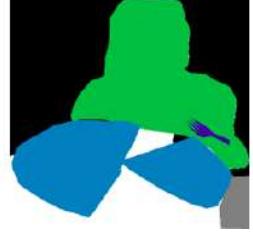
Figure A8. CAMs results on MS COCO *train* set. From (a) to (c): images, our CAMs, and Ground-Truths (GTs).

972
973
974

(a)

(b)

(c)

975
976
977
978
979
980
981
982983
984
985
986
987
988
989
990991
992
993
994
995
996
997
998
9991000
1001
1002
1003
1004
1005
1006
1007
10081009
1010
1011
1012
1013
1014
1015
10161017
1018
1019
1020
1021
1022
10231024
1025Figure A9. Semantic segmentation results on MS COCO *validation* set. From (a) to (c): images, our Deeplab, GTs.

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078