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We provide additional analyses and examples of the pro-
posed method. The followings are included in this supple-
mentary material:

A Examples of reconstructed images from Fdec

B Implementation details of the neural networks

C Experiments of localization functions Ftrack and Floc

E Image-goal navigation results on MP3D [1] dataset.

D Ablation studies of the modules in the navigation sys-
tem.

F Qualitative examples of image-goal navigation episodes

G Implementation details of each submodule in the navi-
gation module.

A. Examples of reconstructed images
We provide examples of the reconstructed images from

the decoder Fdec in Figure 2. The images are sampled from
unseen environments, and not used during training. We
embedded eight image observations for each scenario into
RNR-Map and reconstructed the images. Also, we sample
two novel views, which are not embedded in RNR-Map. We
can see that Fdec can render images well in both seen and
novel views. More importantly, RNR-Map is able to embed
and reconstruct images from arbitrary scenes. RNR-Map can
only render the observed region from various viewpoints,
and the unobserved regions are rendered as empty space.
Examples of the rendered unobserved region are shown in
the last three cases in Figure 2.

Although the quality of each image is not state-of-the-
art, RNR-Map can reconstruct the overall structure of the
image and render large objects. Small objects and the details
of the texture are often ignored in rendered images. The
experiment results from the image-goal navigation task show
that it is enough to accurately infer the camera pose based on
the image renderings. Better training techniques and more
weight parameters of the encoder and decoder will improve
the image quality and navigation performance.
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Figure 1. Illustration of decoding process.

B. Network Architecture and Training Details

B.1. Encoder and Decoder

We use images with a size of 128×128×4. The encoder
used in Fenc is a simple convolutional network consisting
of four convolutional layers. The encoder embeds an image
I into a same-sized feature C with 32 channels. We nor-
malize each pixel feature ch,w along the feature dimension.
These pixel features are averaged according to their (inverse)
projected 3D positions and embedded into RNR-Map m.

The network structure of the decoder is adopted from
GSN [2]. The illustration of the decoding process is shown
in Figure 1. Given a query pose p and known camera intrin-
sic, we can calculate which 3D position will be rendered in
a specific pixel (h,w). More specifically, assuming a ray
which passes the pixel (h,w), we sample 3D points along
the ray. Let u be the variable of how far the point is from the
camera center along the ray. For each sampled 3D point, we
can calculate its map position, and select the corresponding
feature q from the m. As the calculated map position will
have continuous values, we sample the feature using bilinear
interpolation between the grids. GSN proposed a local co-
ordinate system, which represents a 3D position of a point
with a relative pose in a grid. The decoder network takes
this local pose p′, view direction d, and the sampled latent
code. This can be understood as the decoder rendering how a
specific region would look like, from the local pose and view
direction. The latent code becomes the modulation linear
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Figure 2. Examples of the reconstructed images. The odd rows are the ground-truth images, and the even rows are the reconstructed
images from Fdec. In each row, eight images are embedded in RNR-Map. The last two columns are reconstructed from a novel view. Note
that unobserved regions are rendered as an empty space (marked with red circle ❍). Each image is rendered with size 128×128.
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layer, and outputs the occupancy σ, and appearance a ∈ R3

The pairs of occupancy and appearance are calculated for
all the sampled latent codes along the ray. Finally, the ren-
dered color of a ray r is calculated with implicit volumetric
rendering [11]:

c(r,m) =

∫ uf

un

Tr(u)σ(r(u), q)a(r(u),d, q)du

Tr(u) = exp(−
∫ u

un

σ(r(u), q)du),

(1)

which is the same as the rendering function in GSN [2].
We only have changed the last step of the rendering in

GSN. For computational efficiency, GSN renders a small-
size of feature map and upsamples it as an image using a
convolutional network. Since the objective of GSN is to
generate a realistic scene, a whole image with good quality
is needed to evaluate the generated scene. However, RNR-
Map needs to individually render a small subset of pixels
for the efficient calculation in the camera tracking function
Ftrack. Hence, we did not use the last convolutional network
in GSN, and replaced it with a simple linear layer. With this
linear layer, we can get the color of the selected pixels, not
requiring whole image rendering.

The size of the RNR-map represents 32m × 32m area
with 128× 128× 32 size of a tensor, where 32 refers to the
feature dimension. Each grid cell in RNR-map represents
25cm× 25cm of a region.

B.2. Localization Network Floc

The image-based localization is based on two RNR-Map,
m and mtrg. m is constructed using partial observations
from the environment, and mtrg is constructed with the
given query image. Note that the query image is embedded
in mtrg at the origin pose p0, (mtrg = Freg(Itrg, p0; θenc).)
The localization proccess Floc is done by convolving the
given RNR-Map m ∈ R128×128×32 and the target RNR-
Map m32×32×32

trg . As mtrg has only the information of the
target image at the origin, most of the grid cells are empty.
Hence, we crop and only use the center of mtrg, to reduce
unnecessary computations.

The localization network Floc consists of three convo-
lutional neural networks, Fk, Fq and FE . The last neural
network FE has two heads FE1

, FE2
, whose outputs are the

heatmap Ê and the predicted orientation of the query pose
âtrg, respectively. Fk, Fq, and FE1

have the same U-Net
architecture and output the same-size feature as the input.
FE2 is based on ResNet-18, which processes the output of
the cross-correlation into the 18-angle bins.

B.3. Stopper Fstop

The stopper Fstop determines whether the agent is near
the target location or not, based on m and mtrg. We em-
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Figure 3. Diagram of Fstop.

ployed the attention mechanism for Fstop, the overall pro-
cedure is illustrated in Figure 3. The local area has the
majority of the information required to determine the rela-
tive distance to the target. Hence we crop the neighborhood
of the agent position in m, and provide it as an input to
Fstop. The cropped patch m′ ∈ R32×32×D and the target
mtrg are flattened and considered as a sequence of the latent
codes. We conduct self-attention for each sequence, and then
conduct cross-attention between them as shown in Figure
3. The outputs of the cross-attention are unflattened as the
original size and forwarded to a convolutional network. This
convolutional network consists of four convolutional layers
and a linear layer. The last linear layer outputs the prediction
of the closeness to the target.

B.4. Training

We have collected 200 random navigation trajectories on
86 (training 72 + validation 14) scenes from the Gibson [23]
dataset. We first trained the pair of encoder and decoder, and
then trained the Floc and Fstop with the frozen parameters
of the encoder.

The neural networks used in RNR-Map are all trained
with the same dataset. The data sample for each neural
network is also created in a similar manner. We sample a
trajectory from the dataset and select a subset of frames from
the trajectory. The pose information of the subset is normal-
ized with the first frame of the sampled subset, considering
the first frame as the origin. The images are embedded in
RNR-Map according to the normalized pose. Then we se-
lect a query frame from the trajectory. For the encoder and
decoder, the query image is selected in the subset. They
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are trained to reconstruct the query image from RNR-Map.
When Floc is trained for image-based localization, the query
image is also selected from the subset which is embedded in
RNR-Map. In contrast, when Floc is trained for navigation,
the query image is often selected outside of the subset, which
is not provided in RNR-Map. Using this data sample, Floc

is trained to estimate which grid cell would be the closest
to the target location. The Fstop is trained to determine the
query position is in the neighborhood of the origin (the first
frame of the sampled subset).

The training of the encoder and decoder is done with four
GPUs (24GB NVIDIA GeForce RTX 3090), with a batch
size of 16. The Floc and Fstop are trained with one GPU
(24GB NVIDIA GeForce RTX 3090), with a batch size of
32. All neural networks are trained until the validation loss
converges.

C. Localization Experiments
C.1. Camera Tracking

We compare the proposed method on the camera tracking
task against existing methods that build an environmental
map in the latent space. MapNet [7] proposed a method to
build an allocentric spatial memory from egocentric observa-
tion. This method builds a spatial memory for camera pose
localization, which is done by comparing the latent features
between the current image and the memory. The localiza-
tion function Floc in our method resembles this operation.
NICE-SLAM [27] builds a renderable latent map of the en-
vironment using a differentiable rendering function (NeRF).
Localization and mapping of this method are based on the
photometric error between the rendered image and the ob-
servations. We used the official repository of each method1.
The objective of this task is to estimate the camera trajectory,
following a stream of image observations and noisy odom-
etry sensor readings. We evaluate RNR-Map and MapNet
with 1,000 trajectories from the validation scene, and a 10%
subset for NICE-SLAM. We were only able to test a small
subset for NICE-SLAM due to its large computational time.
Each trajectory contains 1,000 frames of observations. We
use root mean squared error of average trajectory error (ATE
RMSE) [18] as a metric for the accuracy of camera tracking.
The inference time is also measured, and it is the average
mapping and tracking time for a single frame. The inference
times of every method are measured on a desktop PC with a
Intel i7-9700KF CPU @ 3.60GHz, and an NVIDIA GeForce
RTX 2080 Ti GPU.

The experiment results are shown in Table 1. Raw noise
in the first row shows the average trajectory error when the
noises are not adjusted by any camera-tracking method. Our
method is slightly slower than MapNet. The reason is that the

1MapNet: https://github.com/jotaf98/mapnet, NICE-
SLAM: https://github.com/cvg/NICE-SLAM

localization function of MapNet is based on cross-correlation
between the latent maps, while our camera tracking function
Ftrack is based on rendering-based optimization. However,
our method shows higher accuracy in inferring camera poses.
MapNet discretizes the environment into grids and selects
the most relevant grid cell for localization. In contrast, by
rendering the image observations, we can adjust the camera
pose at a finer level, smaller than the grid size.

Since our method directly embeds the image feature to
the grids, RNR-Map shows a much faster inference speed
because NICE-SLAM needs a rendering-based optimization
process for mapping. The NICE-SLAM camera tracking re-
sults are significantly worse than the performances described
in the original paper [27]. This is because our trajectory
dataset is for navigation. There is much less overlap be-
tween each frame than in the dataset used for SLAM tasks,
which results in performance deterioration. We also tested
a different hyperparameter set for NICE-SLAM which con-
ducts more optimization steps on both mapping and tracking
(NICE-SLAM*). NICE-SLAM* outputs much more accu-
rate results for the camera tracking. There is a significant
trade-off between accuracy and inference time in NICE-
SLAM, as more optimization steps lead to high accuracy on
camera tracking but take considerable time.

C.2. Image-Based Localization

The objective of the image-based localization task is to
find the pose of the query image, which is observed in the
distant past. This task is different from camera tracking,
which asks about the current pose of the agent, requiring
relatively recent information. We tested each baseline on the
image-based localization, and the results are shown in Table
1. We sampled 10 query images from each trajectory used
in camera tracking (a total of 10,000 test samples). Also,
in here, we were only able to test 10% of the samples for
NICE-SLAM (1,000 test samples).

The RNR-Map is aggregated along the trajectory, preserv-
ing past information. As a result, it can be used to locate a
target that has been observed in the distant past. MapNet [7]
is focused on finding the camera pose at the moment, so it
uses a recurrent neural network (RNN) for a better under-
standing of sequential observations. This RNN makes the
method less effective in the image-based localization task
because old information can be easily lost.

For NICE-SLAM, we render each pose candidate and
select the best pose with the lowest photometric difference.
As the rendering process takes a lot of time, we made NICE-
SLAM more privileged, providing the possible pose can-
didates. The pose candidates are the recorded poses from
the mapping process. NICE-SLAM shows a much longer
inference time because the predicted location always has
to be compared in the image domain, requiring a rendering
process. In contrast, RNR-Map can find the location at high
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(a) Camera Tracking + Mapping (b) Image-Based Localization

ATE RMSE (m) Inference Time (s) 25cm Recall (%) 50cm Recall (%) 1m Recall (%) Inference Time (s)

Raw Noise 0.877 - - - - -
MapNet [7] 0.332 0.104 8.6 15.4 21.2 0.027

Nice-SLAM [27] 0.941 6.743 85.9 93.9 94.3 24.520
Nice-SLAM* [27] 0.071 25.977 91.1 93.7 94.4 24.520

RNR-Map (Ours) 0.108 0.271 76.6 99.2 99.5 0.018

Table 1. Localization Results. (a) Camera Tracking. ATE: Average Trajectory Error. The inference time is the average time of mapping
and tracking time for a single frame. (b) Image-Based Localization. N -cm Recall refers to the ratio of the cases which the localization
error is below N -cm. The inference time is the amount of calculation time for a single query, assuming a map is given.

Difficulty OC 1 OC 2 OC 3 OC 4

Avg Img. diff. 7% 14.1% 23.8% 33.9%

Dist. Err.(m) 0.083 0.091 0.111 0.140
25cm Recall (%) 76.7 72.8 71.5 69.6
50cm Recall (%) 99.8 98.8 98.6 97.4

1m Recal (%) 99.8 99.0 99.2 98.5

Table 2. Localization Results on Object Change scenarios. Avg
Img. Diff.: Average image differences between the query image and
the originally observed image. Dist. Err.: Distance error between
the localized position and the query position.

speed with high accuracy, by directly comparing the latent
codes rather than rendering every position. Floc of RNR-
Map locates the target with less than 50cm with an accuracy
of 99%, with a fast speed of 0.018 seconds. Floc selects
the most probable grid which corresponds to 25cm× 25cm
region. This reduces the performance of the 25cm Recall,
which requires precise localization finer than the grid size.
However, compared to rendering each image and comparing
them to the query, the RNR-Map still exhibits 5.87% higher
localization performance in 50cm Recall with an incompara-
bly faster time.

We provide some examples of success cases and failure
cases from experiment results in Figure 4. The Floc generally
finds the query observation with a small error. However,
when there are multiple visually-similar regions in the given
environment, Floc often selects the wrong places. We can
see that the found location has a similar visual appearance
to the query image.

C.3. Similar-image-goal localization

We can leverage this RNR-Map for searching the most
similar place to the query image even if the exact place is
not in the current environment. Two scenarios can be consid-
ered: (1) (Object Change) There have been large changes in
the environment so the object configuration of the environ-
ment is different from the information in the RNR-Map. (2)
(Novel Environment) The user only has a query image from
a different environment but wants to find the most similar
place in the current environment.

RNR-MapQuery Found RNR-MapQuery Found

Success Case Failed Case

Figure 4. Image-based Localization Examples. The first column
shows some examples of successful localization, and the second
column shows some examples of failed localization. The query
location is marked as red dot, and the predicted localization is
marked as a blue dot.

Object change. We divided the difficulty of the localiza-
tion scenario with the changed environments into four levels:
OC1, OC2, OC3, and OC4. We first recorded RNR-Map
map for each validation scene without any additional objects.
Then we randomly place the random objects (bags, boxes,
sofa, chair, toys, etc.) in the scenes, and take pictures of the
changed environment. We gave this picture with objects as
a query image. The difficulty is determined by how much
the image has been changed because of the random objects.
The image difference is calculated as the L1 loss between
the newly captured image with the random objects and the
original image without objects. This value is normalized
by the size of an image so that it represents how much the
image has been changed from the original. Each difficulty
contains 300 samples of the key scene and query image pair.
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We show the quantitative results in Table 2. We observed
that the RNR-Map robustly localizes query images even if
some object configuration changes. The RNR-Map finds the
query location with less than 50cm error in 97.4% of the
cases, even in the most difficult scenario. The qualitative
results are shown in Figure 6a.

Novel environments. We also tested the novel environ-
ment (NE), where the query image is from a different scene.
The objective of this task is to find the most visually similar
location to the query image. However, the visual similarity
is hard to quantify and can vary depending on the metric.
To evaluate the localized observation, we use various types
of metrics which can measure the similarity between im-
ages. We leverage two image encoders which are trained
using contrastive learning (CLIP, CL). In contrastive learn-
ing, the image encoder converts images into feature vectors
and is trained to maximize the cosine similarity between
the features from similar images. Using the two contrastive
learning models, we calculate the cosine similarity of the
feature vectors from the query image and the localized obser-
vation. We also utilize the structural similarity index (SSIM)
and L1 loss to measure the visual similarity. The following
metrics are employed:

• CLIP [15]: CLIP [15] is a weakly supervised vision-
language model with a web-scale dataset, which is
trained to embed images and text into a joint latent
space. CLIP encoding contains a semantic understand-
ing of an image, and this model is widely used in vari-
ous kinds of downstream tasks [3, 5, 13, 14, 16, 19]. We
use CLIP for measuring visual similarities between im-
ages. The weight parameters from the publicly released
model 2 are used. This model only takes RGB images.

• CL (SupContrast) [8]: We use a contrastive learning
model [8] specially trained on the images from the Gib-
son [23] and MP3D [1] datasets. During the training,
similar images are defined by the physical distance be-
tween the positions where the image was taken. This
model is trained to encode the images from the same
region (maximum 2m apart) into similar feature vectors,
which show high cosine similarity. This model takes
RGBD images.

• SSIM [21] (Structural similarity index): We mea-
sured SSIM between the depth images of the query
image and the localized observation. This measure
can represent the similarity between the 3D geometric
structures in images.

• (Inverse) L1: We measure the direct pixel differences
between the images. The sum of L1 losses from both

2https://github.com/openai/CLIP

Search Method
Similarity (%) CLIP [15] CL SSIM L1

Random 88.23 30.91 78.66 88.44
Max CLIP [15] 100.0 61.36 84.58 90.48

Max CL 93.26 100.0 91.29 91.60
Max SSIM 93.75 66.98 100.0 93.40

Max Inv. L1 90.77 49.68 90.91 100.0

RNR-Map (Ours) 94.52 82.9 90.93 91.41

Table 3. Novel Environment Localization Results. The rows show
each search method that finds the most visually similar place based
on own metric or method (random, ours). Each column reports the
normalized visual similarity from each metric, measuring the image
found by each search method in rows. Naturally, the measured
similarity of a metric found by the same metric would be 100%.

Figure 5. Correlation matrix of the similarity metrics and the
probability value from RNR-Map.

RGB and depth images are used. As L1 represents the
distance between the images, we inverse the value to
use it as a similarity measure.

We tested 100 novel environment scenarios. As the query
image is not from the same scene, the maximum visual simi-
larity may vary depending on the given scene. We normalize
each similarity metric by the maximum possible value from
the given scene. The normalized value represents how much
the found location is visually similar compared to the most
visually-similar location. The experiment results are shown
in Table 3. The random in the first row shows how much the
metrics would appear when we select a random position.

We observed that showing high similarity on one metric
did not always imply high similarity on other metrics. We re-
port the experimental results when a query image is searched
based on a specific metric (second to the fifth row of Table 3).
We sampled all possible locations from the given scene and
evaluated each image with the metrics. For example, the im-
age which shows the highest CLIP visual similarity becomes
the localized image by using CLIP as a search method (Max
CLIP in Table 3). The CL column of the Max CLIP row
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Query Original 
Image

Localized 
Observation

OC3 OC4

Query Original 
Image

Localized 
Observation Query Original 

Image
Localized 

Observation

OC2

(a) Examples of Object Change scenarios. Examples from OC2, OC3 and OC4 levels are shown in the figure. More examples are provided in the
supplementary video.

SSIM

CL
Query Found Query Found Query Found

(b) Examples of Novel Environment scenarios. Query is the given localization query from different environments, and Found is the localized observation
found by RNR-Map. The image pairs are sorted based on SSIM similarity and CL similarity.

Figure 6. Examples of similar-image-goal localization task.
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Gibson-Curved Easy Medium Hard Overall

Exloration Score Latent Score GT Point Navi GT Stopper SR SPL SR SPL SR SPL SR SPL

Ground-truth
Information

✔ ✔ ✔ ✔ 98.0 85.0 95.0 70.8 86.4 53.9 93.1 69.9
✔ ✔ ✘ ✔ 94.6 81.8 90.1 66.9 72.2 45.0 85.6 64.6
✔ ✔ ✔ ✘ 72.4 61.2 65.2 47.1 55.2 33.2 64.3 47.1

Exploration
Strategy

✔ ✘ ✘ ✘ 59.0 39.5 57.0 35.5 37.9 21.5 51.3 32.2
✘ ✔ ✘ ✘ 71.1 60.5 65.9 45.4 40.4 24.2 59.2 43.4

Full Model ✔ ✔ ✘ ✘ 71.7 59.9 67.2 47.5 45.2 29.2 61.4 45.6

Table 4. Ablation studies of the navigation module on Gibson-curved scenarios. Exploration score and Latent score are used in the
exploration module for planning where to visit. GT Point Navi and GT Stopper are ablations of the point navigation policy and the stopper
module Fstop, respectively. Each module is replaced with a simple function that has access to ground-truth information from the simulator.

shows that the image which has the highest CLIP similarity
shows 61.36% of CL similarity compared to the maximum
CL similarity. We can see that the maximum of each metric
does not always mean the maximum in the other similarity
metrics.

Meanwhile, the RNR-Map localizes a query image with
consistently high value in all metrics (the last row). The
RNR-Map shows general visual similarity in various metrics,
in contrast to using a specific metric as a search method. We
can infer that the RNR-Map finds a visually similar location
even with a query image from a different environment.

Furthermore, we want to stress that the localization pro-
cess Floc of RNR-Map is done with a forward pass to the
neural network with 56.8Hz of speed. Even with the fast
speed, RNR-Map still achieves competitive similarity com-
pared to the cases when all the possible images are compared
with the query image one by one. We also plot the correla-
tion matrix between the metrics and the probability value
from RNR-Map in Figure 5. The RNR-Map shows positive
correlations with the similarity metrics. The examples of the
query image and the localized observation pairs are shown
in Figure 6b. In Figure 6b, the image pairs are sorted by
CL similarity and SSIM similarity. We observed that SSIM
similarity is high when the overall 3D structures of the im-
ages are similar, while CL similarity is high when the overall
colors of the images are similar.

D. Navigation ablation studies

In this section, we report the ablation studies of the navi-
gation module. The results are shown in Table 4, and each
method is evaluated on Gibson-curved scenario from NRNS
dataset [6] without noise setting.

Ground-truth information. We provided the ground-truth
information to the point navigation policy and the stopper
module. With ground-truth information, the point-navigation
policy can reach the target using the shortest path without
collision. The stopper module with the ground-truth infor-
mation has access to the geodesic distance to the target, so

that it can detect the target location and take a stop action
accurately. We can observe that navigation performance
increases when given ground-truth information. The infor-
mation about the distance to the target location is critical to
the performance. Both the success rate and SPL dramatically
increase because the ground-truth information enables effi-
cient navigation without wandering or collision. Also, the
agent has no risk of taking the false-stop action (terminating
the episode even when the target is far) or overlooking the
target location. We observed that the ground-truth point nav-
igation policy often leads to the failure of an episode. Hence,
in the medium scenarios, the model without the ground-truth
point navigation policy (full model in the last row) shows
better performance than the one with the ground-truth point
navigation policy. This is because of the relatively inefficient
path from our point-navigation module, which leads to a
random chance to explore the environment more and find
the target location. We anticipate that an improved point
navigation policy and better Fstop will largely improve the
navigation performances.

Exploration strategy. The exploration module in the navi-
gation module selects where to explore in order to find the
goal location. The exploration module draws a Voronoi
graph on the occupancy map and selects a node as an ex-
ploration candidate from the created graph. Two criteria are
used for selecting the exploration candidates, latent score
and exploration score. The latent score is based on the lo-
calization heatmap value from Floc. The occupancy map
has three types of values, free (1), occupied (2), and un-
seen (0). The exploration score is based on the number of
unseen pixels in the neighborhood of a pixel. The more
unseen pixels are in the neighborhood, the more likely a
location has been underexplored and has a high probability
of discovering new areas. We ablated each score, and the
results are shown in Table 4. Without the latent score, only
the exploration score is used for exploring the environment.
The exploration score helps the agent visit all the possible
places in the scene. However, this score does not consider
the information from the target, so the agent may not be able
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Training Dataset Method Easy Medium Hard Overall

SR SPL SR SPL SR SPL SR SPL

MP3D NRNS [6] 23.7 12.7 16.2 8.3 9.1 5.1 16.3 8.7
MP3D SLING+NRNS [22] 43.2 19.7 32.5 15.1 22.1 9.9 32.6 14.9
Gibson OVRL [24] 16.9 8.3 25.8 13.5 14.3 7.0 10.6 4.6
MP3D OVRL [24] 52.4 35.2 42.6 26.3 29.7 16.9 41.6 26.1
Gibson SLING+OVRL [22] 47.5 30.2 28.4 17.0 19.3 9.3 31.7 18.8
MP3D SLING+OVRL [22] 62.6 41.1 48.4 31.5 29.2 17.7 46.7 30.1

Gibson RNR-Map (ours) 58.42 49.01 50.35 35.57 34.38 22 47.7 35.5

Table 5. Image-goal navigation results on MP3D [1]-curved scenarios in NRNS [6] dataset. The first column shows the training dataset
each method has trained on.

to find the target within the time limitation due to inefficient
exploration. We can see that the agent finds the target more
successfully when only the latent score is used. In the full
model, we use the sum of the exploration score and the latent
score. Using the combination of two scores helps the agent
to find the target location efficiently. The latent score can
guide the agent to the target location based on the RNR-Map.
However, when there is not much information or clues about
the target location, the exploration score can encourage the
agent to explore the environment.

E. Navigation on MP3D Dataset

We provide the image-goal navigation experiment results
on MP3D dataset in Table 5. The experiments are done
without noise setting, and we report the digits from [6], [22]
for the baselines. The proposed RNR-Map-based navigation
framework outperforms the baselines, except for the success
rate in easy scenarios. The neural networks in RNR-Map are
trained using Gibson [23] dataset. Based on the results, we
can observe that the RNR-Map-based framework is general-
izable to a different dataset, without any fine-tuning.

F. Navigation Examples

We provide examples from the image-goal navigation
episodes of RNR-Map in Figure 7. The latent scores usually
highlight unexplored areas at the beginning of episodes. This
is because the Floc for navigation is trained to predict the
closer area to the target given the partial information of the
environment. We can see that the way to other rooms is
highlighted in the first column of Figure 7a and 7b. The
agent follows the latent score and expands its RNR-Map
according to the image observations. During the exploration,
the agent observed the target-related region and successfully
reached the target location. More examples are provided in
the attached video.

G. Implementation Details for the navigation
submodules

Graph Generation For efficient exploration planning,
we discretize the region in the observed environment into
a graph. Figure 8 shows the process of graph genera-
tion. This method is inspired by robot exploration litera-
ture [9, 12, 25, 28], which draws an (approximated) Voronoi
graph on the occupancy map. Originally, the Voronoi graph
consists of nodes that are equally distanced from the neigh-
bor obstacles. We simplify this graph construction with
the image skeletonizing method in the image processing
library (skimage.morphology.skeletonize) [20].
This function is based on the image thinning algorithm pro-
posed in [26]. As the skeleton only consists of lines, we need
to determine which pixels will be the nodes. We select the
pixels that have many neighbors as a node. The neighbor of
more than two pixels indicates that the pixel is not on a line,
but instead in the intersection of several lines. Then we split
the skeleton based on the selected nodes, and determine the
relationship between the nodes. The created graph is used
for planning the exploration of the agent. The exploration
module selects the node to explore, rather than sampling a
pixel among the free spaces in the occupancy map.

Exploration Score The exploration module evaluates each
node in the graph with two criteria. The first one is the latent
score, which is from the heatmap from Floc in the localiza-
tion module. This heatmap highlights the place related to
the target image. The second one is the exploration score,
which is based on the number of unseen pixels in the neigh-
borhood of the node. A location is more likely to have been
underexplored and have a high likelihood of discovering new
areas if there are more unseen pixels nearby. The examples
of calculating the exploration score are presented in Figure 8.
Drawing a set of rays centered at the node, we count the num-
ber of unseen pixels in the rays. We also evaluate whether a
ray is blocked by an obstacle, and limit the length of the ray
to less than the distance to the blocked obstacle. The num-
ber of unseen pixels is normalized into 0.0 to 1.0, and this
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Figure 7. Examples from image-goal navigation episodes. The heatmap values (the latent score) from Floc are presented on the map
according to the color bar on the right. We also marked the locations of high-probability values with the images from the location.

value becomes the exploration score. Furthermore, we also
calculate the distance from the agent to each node and add
the inverse value to the exploration score. This encourages
greedy exploration, which explores the near neighborhood
first.

Point Navigation Module The point navigation module
takes the map position of the agent and the selected node
position to explore. This module calculates the collision-
free shortest path to the node based on the fast-marching
method. We used the open-source library for the fast-

marching method 3. After a navigation path is obtained,
the point navigation module outputs an appropriate action
based on its relative pose to the path points.

Stopper Module The stopper module has two compo-
nents, Fstop and the last-mile approaching function which is
adopted from [22]. First, Fstop determines whether the agent
is near the target location. Second, if Fstop found that the
target is near the agent, we conduct keypoint-matching [17]
between the current observation and the target image. If a
sufficient number of keypoints are matched, we can infer

3https://github.com/scikit-fmm/scikit-fmm
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Figure 8. Overview of the graph generation. We take the free area of the occupancy map and skeletonized the image. Then, we draw a
graph on the skeleton. Each node has an exploration score, which is calculated based on the number of unseen pixels in the neighborhood.

the relative pose between the target location and the current
position using the depth information. As proposed in [22],
we use Perspective-n-Point [10], and RANSAC [4]. After
the relative pose is determined, we set the local goal point,
and the point navigation module navigates to the estimated
target. If the number of matched keypoints decreases below
a certain threshold (20 in our case), the last-mile approach
is terminated, and the exploration module selects the next
exploration target.
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