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Introduction
This is the supplementary material, which is divided into the following sections.

1. Analysis of model efficiency and parameters is given in Sec. 1.

2. Diagram of network structure is shown in Sec. 2.

3. More experiments are shown in Sec. 3.

4. Introduction of nuScenes [2], SemanticKITTI [1] and Waymo Open Dataset [4] are given in Sec. 4.

5. More visual comparisons are shown in Sec. 5.

6. Limitation analysis and future work are shown in Sec. 6.

ID stage 1 stage 2 stage 3 stage 4 stage 5 mIoU (%) inference time parameters
I 75.2 30.4 ms 30.2 M

II ! 76.4 34.8 ms 30.2 M
III ! 76.4 35.8 ms 30.2 M
IV ! 76.5 35.2 ms 30.4 M
V ! 77.1 34.1 ms 31.1 M
VI ! 77.2 34.3 ms 31.1 M

VII ! ! 76.8 39.8 ms 30.3 M
VIII ! ! ! 77.3 44.4 ms 30.5 M
IX ! ! ! ! 77.8 48.5 ms 31.4 M
X ! ! ! ! ! 78.4 53.6 ms 32.3 M

Table 1. Ablation on inserting our module into different stages on nuScenes val set, in terms of performance, inference time, and parameters

1. Analysis of Efficiency and Parameters
As shown in Table 1, we demonstrate the performance and inference time, as well as parameters when our proposed

module is inserted into different stages. From the Experiments I and VI, we notice that the inference time and parameters
only increase 3.9 ms and 0.9 M, respectively, when only inserting SphereFormer into the stage 5. Also, when inserted into
any single stage, SphereFormer improves the result by a large margin, at a low cost of both speed and parameters. Note that
the inference time is yielded by forwarding a single random scene of nuScenes val set into a single RTX 3090 GPU.

Also, we make a comparison with Cylinder3D [5] on SemanticKITTI, as illustrated in Table 2. It is worth noting that our
method outperforms Cylinder3D in both efficiency and model size, which demonstrates the superiority of our method.
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Method inference time parameters
Cylinder3D 170 ms 55.9 M

Ours 123 ms 32.3 M

Table 2. Comparison with Cylinder3D on SemanticKITTI val set
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Figure 1. The framework structure. Our proposed module (i.e., SphereFormer) is inserted into the end of each encoding stage.

2. Network Stucture
As shown in Fig. 1, we illustrate the structure of our framework. There are a total of 5 stages, and our proposed module

(i.e., SphereFormer) is inserted into the end of each encoding stage. The whole structure is based on U-Net [3]. For the
downsample layer, we adopt a sparse convolution with both kernel size and stride set to 2. As for the upsample layer, we use
an inverse sparse convolution.

3. More Experiments
3.1. Effect of inserting into different stages

As shown in Table 1, from Exp.II to VI, we apply SphereFormer into a single stage from stage 1 to stage 5, respectively.
We can consistently obtain performance improvement. It is worth noting that in Exp.VI, by inserting SphereFormer into
stage 5 only, we yield a 2.0% mIoU performance gain. Meanwhile, it incurs merely negligible inference time and model
parameters. From Exp.VII to X, we add SphereFormer to more stages one by one. We also yield consistent improvement by
including one more stage.

This ablation also indicates that we can achieve the tradeoff between performance and efficiency by inserting Sphere-
Former into different stages. When efficiency is in higher priority, we can choose to add SphereFormer to the latter one or
two stages. And when performance is more needed, we can include more stages to yield more performance gain.

3.2. Experimental Result on SemanticKITTI Validation Set

The semantic segmentation result on SemanticKITTI val set is shown in Table 3. Our method outperforms the baseline
model by a large margin. Again, the result demonstrates the effectiveness of our proposed module.

4. Datasets Introduction
nuScenes. The nuScenes dataset [2] comprises 1000 driving scenes. 850 scenes of them form the training and validation
set, and the other 150 scenes are for testing. It contains 16 semantic classes for the LiDAR semantic segmentation task. The
scene is scanned by 32-line LiDAR, so the point cloud is relatively sparser compared to the following two datasets.
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Baseline 66.6 96.3 44.6 76.3 89.6 58.6 77.3 91.3 0.0 94.3 51.7 81.8 1.2 91.0 62.5 88.3 70.2 75.3 64.6 51.4
Ours 67.8 96.8 50.7 75.1 93.1 65.7 76.9 92.0 0.0 94.7 53.2 82.2 3.2 90.7 58.4 88.7 71.2 75.9 64.6 54.5

Ours‡ 69.0 97.0 53.4 77.2 95.1 67.0 78.2 93.7 0.0 95.2 55.5 83.1 2.8 91.0 60.4 89.2 72.5 76.9 66.3 55.9

Table 3. Semantic segmentation results on SemanticKITTI val set. ‡ denotes using testing-time augmentations.

SemanticKITTI. The SemanticKITTI dataset [1] is composed of 22 point cloud sequences. The sequences from 00 to 10
are used for training. And the sequence 08 is used for validation. The remaining sequences 11 to 21 are adopted for testing.
It has 19 classes which are frequently seen in driving scenes.

Waymo Open Dataset. The Waymo Open Dataset [4] contains 798, 202, and 150 point cloud sequences for training,
validation and testing, respectively. Only 29, 667 frames of the training and validation sets are annotated with semantic
segmentation labels. It has 22 semantic classes that are common in the driving scenes.

5. More Visual Comparisons
As shown in Fig. 2, we illustrate more examples for visual comparison. As highlighted with the red boxes, our method is

superior to the baseline model (i.e., SparseConv). Ours avoids large-scale artifacts, and can accurately recognize the road,
car, sidewalk, and so on. Also, with our proposed module, the model can recognize distant objects more easily.

6. Limitation and Future Work
Limitation. Our method has been verified to work well on large-scale LiDAR point cloud data, but the performance on
small-scale datasets is still unconfirmed. Also, although when inserting our proposed module into only stage 5, the perfor-
mance increases by a large margin (i.e., 2.0% mIoU) at a low cost of efficiency as shown in Table 1. But, when inserting
our proposed module into all stages, the inference time increases a lot. We explain that the efficiency of our method highly
relies on the CUDA kernel optimization, and currently, we only adopt several common optimization tricks such as memory
coalesce and broadcast, but still have not explored more advanced methods. We believe the inference delay can be greatly
reduced with proper CUDA optimization techniques.

Future Work. First, we will extend our method to more datasets and more LiDAR point cloud tasks such as panoptic
segmentation. Second, we will adopt more advanced CUDA optimization techniques to improve efficiency.
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Figure 2. More visual comparison between vanilla SparseConv and ours (best viewed in color and by zoom-in). The last two columns are
the difference maps with the ground truth.
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