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Supplementary Material

A. Background
Since recent 3D-aware image generative models are

all based on neural implicit representations, especially
NeRF [15], here we briefly introduce the NeRF-based 3D
representation and more StyleSDF details for clarification.
NeRF-based 3D Representation. NeRF [15] proposed an
implicit 3D representation for novel view synthesis. Specif-
ically, NeRF defines a scene as {c, σ} = FΦ(x,v), where
x is the query point, v is the viewing direction from camera
origin to x, c is the emitted radiance (RGB value), σ is the
volume density. To query the RGB value C(r) of a point
on a ray r(t) = o+ tv shoot from the 3D coordinate origin
o, we have the volume rendering formulation,

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),v)dt, (1)

where T (t) = exp(−
∫ t

tn
σ(r(s))ds) is the accumulated

transmittance along the ray r from tn to t. tn and tf de-
note the near and far bounds.
More StyleSDF Details. In hybrid 3D generation [4, 10,
16], the intermediate feature map is calculated by replac-
ing the color c with feature f from ϕf , namely F(r) =∫ tf
tn

T (t)σ(r(t))f(r(t),v)dt. In StyleSDF, the Sigmoid ac-
tivation function σ is replaced by σ(x) = Kα (d(x)) =
Sigmoid (−d(x)/α) /α, where α is a learned parameter
that controls the tightness of the density around the surface
boundary.
Notation Table. For clarity, we include the notations used
in the proposed method in Tab. 1.

B. Implementation Details
B.1. More Methods Details

Surface Point Sampling in Self-supervised Inversion
Learning. In Sec. 4.1 of the main paper, to extract the 3D
shape information S of each synthetic shape, we first sam-
ple a point set P = {PO,PF} where PO and PF contain
points sampled from the surface and around the surface, re-
spectively. To get points over the surface PO for training,
for efficiency, we directly reuse the intermediate results to
render I0 to calculate the surface. Specially, to sample point

set O we replace the color c as the coordinates x of points
along a ray in Eq. (1) and approximate the 3D coordinates
of surface, namely ts(w, ξ) =

∫ tf
tn

T (t,w)σ(r(t),w)t dt.
In this way, we get B ×H ×W surface points for training
in each iteration, where B stands for batch size and H ×W
stands for the resolution to render 3D consistent images,
e.g., 64 × 64. To sample point set F , we add Gaussian
offset to each of the calculated surface points O. Specifi-
cally, we adopt Gaussian distribution N (0, (r/4)2) where r
is the radius of the scene. In this way, points falling within
4 standard deviations would cover 95.44% of the whole
3D space. Following PIFu [22], we also uniformly sam-
ple 0.5 × B × H × W points within the whole 3D space
defined. The overall quantity of the point set surface is
|F| = 1.5 × B × H × W . We find this sampling strat-
egy avoids overfitting and yields better performance.

Training Details of High-Fidelity Inversion With Local
Features. In Sec. 4.2 of the main paper, we train a local en-
coder E1 to extract pixel-aligned features to enrich texture
details for high-fidelity inversion. The network architecture
of E1 is identical to that of PIFu [22], which is a stacked
hourglass network with residual connections. The input
residual map resolution is 256×256, and the output 64×64
resolution feature map. fL ∈ R256 is bilinearly interpolated
from feature map FL at the projected position π(x). As
shown in Fig. 1, we implement the FiLM layer [17] with
two MLP residual blocks [33], which outputs α and β for
modulation, respectively. We use the identical learning rate
and optimizer to train E1.

Novel-View Training Details. For novel-view training for
coherent view synthesis in Sec. 4.3 of the main paper, in
each training iteration with batch size n, rather than sam-
pling n different latent codes {zi}ni=1, we halve the number
of identical latent codes {zi}n/2i=1 while double the rendered
images for each latent code {Iξ1

i , Iξ2

i }n/2i=1 where n is even.
Thus, we train the models to reconstruct plausible novel
views, i.e., G(E(Iξ1

i ), ξ2) ≈ Iξ2

i and G(E(Iξ2

i ), ξ1) ≈ Iξ1

i .
Since the paired-sampled images could serve as both in-
puts and ground truths, the effective batch size and train-
ing cost maintains the same. To train 2D alignment model
EADA, we further regularize the predicted residual map
∆̂ξ1 ≈ Iξ1 − Iξ1

0 with L1 loss, where Iξ1

0 is correspond-
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ing renderer output low-resolution image and λ1 = 0.1.
Note that we finetune pre-trained EADA from HFGI [28]
with novel-view training and no edited images are involved
in the training time.
Curriculum Pose Sampling. At the beginning of the train-
ing of the hybrid alignment in Sec. 4.3 of the main paper,
large view changes will make the prediction of residual fea-
tures and the inpainting of occlusion regions extremely dif-
ficult. As a result, our model is prone to blurry results. We
attribute the reason to the ill-posed nature of rendering novel
views given partial observations since the inpainted image
is not unique. To facilitate novel-view training, we design
a curriculum learning strategy [7] based on pose sampling
difficulty. Implementation wise, given the camera pose dis-
tribution ξ ∼ pξ with mean µ and standard variance σ, we
fix the µ and scale the σ with a weight α which is initially
set to 0 and gradually increases to 1 as the training goes.
Intuitively, when α = 0 the source view ξ is identical to
the query view ξ′, the training degrades to a regression task
where the model shall reconstruct all the texture details to
minimize the loss. As the variance α ·σ increases, the train-
ing becomes a conditional generation task to inpaint plausi-
ble and photo-realistic areas.

B.2. More Experiments Details

Training Details. In this work, we directly use the offi-
cially released pre-trained GAN models from StyleSDF. In
self-supervised shape inversion learning (Sec. 4.1), due to
GPU memory restriction, we sample 4 shapes per GPU each
iteration for training. After E0 converged, we fix the net-
work weights and only train the E1 for high-fidelity inver-
sion. We train each stage for 50, 000 iterations, which costs
2 days on 4 Tesla V100 GPUs.
Network Architecture Details. For E0, a modified version
of the pSp encoder [20] is deployed here for a fair compari-
son with existing work. Since G0 and G1 of StyleSDF have
9 and 10 latent codes, respectively, we introduce 9 + 10
extra prediction heads to the pSp for the latent code predic-
tion. We observe that early layers of G0 control the geome-
try of generated samples, and later G0 layers as well as de-
coder generator G1 control the texture and high-frequency
details. Thus, we adopt the early pSp feature map of res-
olution 32 × 32 to predict latent code of G0 for geometry
control, and pSp feature map of resolution 64 × 64 to pre-
dict latent code of G0 for texture control. We use the highest
resolution feature map of pSp with resolution 128× 128 to
predict the latent code for G1. We show our FiLM layer
implementation in Fig. 1, where the input features are mod-
ulated by the input conditions with predicted γ, and β. The
MLP is implemented with the MLP residual block [33].
Editing. For attribute editing, following previous works,
we adopt vector-arithmetic [19] based editing. Specifically,
a searched latent code vector paired with a certain attribute
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Figure 1. FiLM Layer Architecture.

is weighted and added to the predicted code ŵ. To search
for the meaningful editing directions on the 3D GAN used,
we first sample 10, 000 images with paired latent codes
from StyleSDF, and then apply the face attribute predic-
tor from Talk-to-Edit [11] to predict the corresponding at-
tributes score. Based on the prediction, we apply SVM
classifier from InterfaceGAN [25] to search for the decision
boundary. As in previous works [20, 26], we search for the
editing latent code in the W space.
3D Face Reconstruction Evaluation Details. We evaluate
the reconstructed 3D meshes and compare them with the
performance of several model-based reconstruction meth-
ods on NoW benchmark [23]. NoW benchmark [23], pro-
vides a test set of 1, 702 images of 80 subjects and a ground-
truth 3D scan per subject. These images are captured with
a higher variety in facial expression, occlusion, and lighting
and shall validate the generality of single-view reconstruc-
tion methods under real-world conditions.

To extract meshes for evaluation, we detect faces and
crop the images using RetinaFace [24] implemented by [29]
and obtain 3D mesh reconstructions from the depth maps
predicted by our method trained on FFHQ pre-trained gen-
erator. We then use the evaluation protocol provided by
the benchmark, which aligns the predicted meshes with the
ground-truth meshes with a rigid transformation based on
seven pre-defined keypoints and computes the scan-to-mesh
distances. We obtain keypoints on our predicted meshes by
applying a facial keypoint detector [30] on the reconstructed
canonical images. Following Unsup3D [32], the average
keypoints are used when the keypoint detector fails.
Video Trajectory Evaluation Details. We sample 500
trajectory videos with pre-trained FFHQ StyleSDF gener-
ator with an ellipsoid trajectory of size 250 from official
StyleSDF code, making a dataset of size 12, 5000. The eval-
uation code and dataset will be released.
Computational cost. We include the computational cost of
each component in the table below.

Component E0 (pSp) E1 EADA

Parameters(M) 219.71 14.06 0.60
MACs(G) 62.95 26.07 4.03

Comparisons with Optimization-based Methods. In



this paper, we include the comparisons with two canoni-
cal optimization-based methods here, namely SG2 [1, 12]
which is initially proposed in StyleGAN [12] paper to
project input image to the W space of the paired generator,
and PTI [21] which further finetune the generator weights
to achieve high-fidelity inversion. We implement SG2 and
PTI following the official implementations and tune the cor-
responding parameters for StyleSDF generator. For SG2,
we optimize 450 steps with learning rate 5e − 3, and for
the pivotal tuning stage, we optimize 100 steps with learn-
ing rate 5e− 5. We adopt an open source EG3D projection
implementation [31] for all EG3D inversion experiments.

B.3. Losses

Reconstruction Loss. We briefly introduce the supervi-
sions we adopt in image reconstructions in both training
stages. First, we utilize the pixel-wise L2 loss,

L2 (I) = ||I− Î||2. (2)

In addition, to learn perceptual similarities, we use the
LPIPS [34] loss, which has been shown to better preserve
image quality compared to the more standard perceptual
loss:

LLPIPS (I) = ||F (I)− F (Î)||2, (3)

where F (·) denotes the perceptual feature extractor.
Finally, a common challenge when handling the specific

task of encoding facial images is the preservation of the
input identity. To tackle this, we incorporate a dedicated
recognition loss measuring the cosine similarity between
the output image and its source,

LId (I) = 1− ⟨R(I), R(Eg(I))⟩ , (4)

where R is the pretrained ArcFace [5] network.
In summary, the total loss function is defined as

Lrec(I) = λ1L2(I) + λ2LLPIPS(I) + λ3LId(I),

where we set λ1 = 1, λ2 = 0.8, λ3 = 0.1 as the defined
loss weights. In E0 training, we supervise images Î0, Î1
of both resolutions. In E1 training, we only supervise the
reconstruction of high-resolution images since the network
weights to render Î0 is fixed. Here, we also impose the
non-saturating adversarial loss with R1 regularization [14]
to improve the naturalness of reconstructed images, which
is defined as:

Ladv = −E[log(D(Î))], (5)

LD = E[log(D(Î))] + E[log(1−D(I))], (6)

LR1 = λ∥∇D(Î; θD)∥2, (7)

where D is initialized with the pre-trained discriminator
paired with the generator and θD is the corresponding pa-
rameters to optimize. In summary, the overall loss is the

weighted summation of of the loss functions described
above:

L = Lgeo + Lrec + λadvLadv + λDLD + λR1LR1, (8)

where we set λD = λadv = 0.01 and λR1 = 10 in the
experiments.

C. More Results
E3DGE on Other GANs and Categories. Besides
FFHQ-StyleSDF in the paper, we show the performance
of our method on FFHQ-EG3D, AFHQ-EG3D(Fig. 2), and
ShapeNet-StyleSDF (Fig. 3). As can be seen, our method
achieves high-quality shape and texture inversion on both
SoTA radiance-based (EG3D) and sdf-based (StyleSDF)
NeRF GANs, demonstrating the generalizability of our
method. We also attempted cat faces apart from human
faces.

Input Reconstruction Novel View Rec & Editing

Figure 2. E3DGE qualitative performance on EG3D Base
Model. Rows 1-2: the inversion result on the CelebA-HQ test
set, with +Smiling and +Eyeglass attributes editing, respectively.
Row 3: the inversion and view synthesis results of AFHQ cat.

Novel View RecInput Novel View RecInput 

Figure 3. E3DGE qualitative performance on ShapeNet Chair.

We also include the preliminary quantitative benchmark of
our method on EG3D in the Tab. 2, which demonstrates the
generality of our method on high-fidelity inversion.

Table 2. Quantitative performance on EG3D (FFHQ).

Methods MAE ↓ SSIM ↑ LPIPS ↓ Similarity ↑

pSp-EG3D 0.251±.03 0.633±.02 0.41±.04 0.377±.05
Ours-EG3D 0.143±.03 0.688±.02 0.30±.03 0.650±.04

3D Reconstruction. We report the 3D face reconstruc-
tion performance on NoW benchmark test set in Tab. 3.



Table 1. Notations used in the proposed method.

Notation Meaning

∗̂ Final predictions
∗̃ Intermediate results
∗′ Abbreviation of target view camera pose
G Generator
G0 Renderer Generator
G1 SR Generator
D Discriminator
E Encoder
E0 Encoder to predict global latent code
E1 Hourglass encoder to predict pixel-aligned local features.
EADA ADA (Adaptive Distortion Alignment) module
W W space for style-based GAN
w Latent code sampled from W space
I Input image
I0 Rendered image from renderer generator
Iedit Edited image
ŵ Predicted latent code from E0

λ Loss weights
x 3D point
P Point set
PO Point set sampled from object surface
PF Point set sampled near the surface or uniformly in the defined 3D space.
d Signed distance function
n Normal for a point
ϕg MLP to predict geometry
ϕf MLP to predict view-dependent feature
ϕc MLP to predict color
v View direction
X A synthetic data sample for training
ξ Source view camera pose
ξ′ Target view camera pose
∆ Residual of predicted image and input image
∆edit Residual paired with an edited image
∆′

edit Residual paired with an edited image rendered from target camera pose.
π(x) Projection of 3D point x to source view
⊕ Concatenation
PE Positional Encoding
β, γ Modulation signals for FiLM
ts(w, ξ) Depth map for code w rendered from pose ξ
F Feature map
FL Local feature map output from E1

F̂ Modulated feature map for final prediction
FADA Local feature map output from E1 with EADA aligned residual
fG Global feature output from the generator.
fL Local feature interpolated from FL
fADA Aligned feature interpolated from FL

f̂L Predicted local feature for final prediction



As can be seen, our method surpasses purely model-free
method [32] and shows competitive performance compared
with methods designed for 3D face reconstruction using ba-
sic models, e.g., 3DMM [2] and FLAME [13]. Note that
as discussed in Wu et al. [32], NoW benchmark is designed
for model-based reconstruction methods and inherently put
model-free approaches at a disadvantage. Moreover, since
the backbones (3DMM/FLAME and StyleSDF) and re-
search problems are different, these methods are not di-
rectly comparable to our method Therefore, we include the
comparisons just for reference and intend to demonstrate
our method yields high-quality geometry inversion and even
better results against the 3D reconstruction method [32] that
does not rely on 3DMM or FLAME. Our comparisons could
serve as a reference for fair quantitative evaluation compar-
isons of future model-free methods.

Table 3. Performance of 3D face reconstruction on NoW [23].

Methods Prior Type Median↓ Mean↓ Std

3DMM-CNN [27] 3DMM 1.84 2.33 2.05
PRNet [9] 3DMM 1.50 1.98 1.88
RingNet [23] FLAME 1.21 1.54 1.31
3DDFA-V2 3DMM 1.23 1.57 1.39
DECA [8] FLAME 1.09 1.38 1.18

Wu et al. [32] Model Free 2.64 3.29 2.86

SG2 [12] 3D GAN 1.89 2.23 1.82
PTI [21] 3D GAN 2.86 3.54 3.01
pSpStyleSDF 3D GAN 1.97 2.43 2.05
e4eStyleSDF 3D GAN 2.83 3.40 2.67
Ours 3D GAN 1.70 2.08 1.67

More Comparisons with Encoder-based Methods. Here,
we include more comparisons with encoder-based methods
in Fig. 4. Our method achieves consistently better perfor-
mance compared to the baselines in terms of reconstruction
fidelity and editing visual quality.
More Editing Results. We show more editing results on
changing 4 semantic attributes of our proposed method,
namely smile (Fig. 5), hair/beard (Fig. 6), age (Fig. 7)
and bangs (Fig. 8). Our method shows promising per-
formance with shape-texture consistent editing. Note that
since StyleSDF is still built on an MLP-based generator [3]
and InterfaceGAN [25] is also not designed for 3D GANs,
the editing performance is hindered to some extent and can-
not achieve comparable performance compared with 2D
StyleGAN. However, we believe this limitation could be al-
leviated in the future by adopting better-designed 3D GAN
architecture, e.g., tri-plane [4] and vision transformer [6].
Our results unleash the potential of this field and show that
3D consistency and high-fidelity reconstruction with high-
quality editing are also achievable in recently developed 3D

GAN. We hope our method could inspire later work in this
field.
More Toonify Results. We show 3D toonify-stylized re-
sults over real-world faces using our proposed method in
Fig. 9. Following [18], we finetune the pre-trained genera-
tor G for 400 iterations with 317 cartoon face images and
use our pre-trained encoder E for inference. Visually in-
spected, the toonified results holds the cartoon style and also
preserve identity of the input image, which demonstrates the
potential of applying our method over downstream tasks.
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Figure 4. Visual comparisons on encoder-based methods. ’Rec’ and ’Edit’ represent reconstruction and editing, respectively.



Ours (Rec)Input + Smile

Figure 5. Visual comparisons on face editing (Smile).



Ours (Rec)Input + Beard / Hair

Figure 6. Visual comparisons on face editing (Beard / Hair).



Ours (Rec)Input + Age

Figure 7. Visual comparisons on face editing (Age).



Ours (Rec)Input + Bangs

Figure 8. Visual comparisons on face editing (Bangs).



Input Toonify (+ Yaw Angle)

Figure 9. Toonify results on faces.
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