
Supplementary Material
We provide more information regarding our flow estima-

tion method SCOOP. Section A presents the derivation of
point cloud correspondence as an optimal transport prob-
lem and the solution by the Sinkhorn algorithm. Section B
includes additional results for the experiments presented in
the paper. In Section C, we report the results of an addi-
tional experiment on a non-occluded data version. Finally,
section D elaborates on our implementation details, includ-
ing network architecture, training and inference procedure,
and the optimization settings of SCOOP.

A. Correspondence as Optimal Transport
As mentioned in the paper, our correspondence-based

flow between the point clouds X,Y ∈ Rn×3 builds on the
optimal transport formulation presented in FLOT [18]. For
completeness, we briefly review the optimal transport prob-
lem and the Sinkhorn algorithm for solving it.

We begin with a hypothetical perfect case, where each
source point xi ∈ X has an exact matching target point
yj ∈ Y . Thus, the flow field holds:

X + F ∗ = ΠY, (16)

where Π ∈ {0, 1}n×n is a permutation matrix representing
the correspondence between the point clouds, with Πij = 1
if xi matches yj and Πij = 0 otherwise.

In this case, estimating the point correspondences can be
modeled as an optimal transport problem [18]. Assuming
that each point in X has a mass 1

n and each point in Y re-
ceives a mass 1

n , the optimal mass transport is given by:

T ∗ =argmin
T∈Rn×n

+

∑
ij

CijTij

such that T1n =
1

n
1n, T⊤1n =

1

n
1n,

(17)

where 1n ∈ Rn is a vector with all entries equal 1, Cij ≥ 0
is the transport cost from point xi to point yj , and Tij ≥ 0 is
the amount of mass transported between these points. The
two terms on the second row of Equation 17 are mass con-
straints, demanding that the total mass delivered from each
source point and received by each target point is exactly 1

n .
T ∗ is optimal in the sense that the mass is transported from
X to Y with minimal cost.

In practice, usually, there is no perfect match between
the point clouds due to objects appearing in or disappearing
from the scene or different points sampled on the scene’s
surface, and the mass constraints in Equation 17 do not
hold. Thus, instead of Equation 17, we used the relaxed
version of the transport problem presented in Equation 3 in
the paper. The relaxed transport problem is solved by the
Sinkhorn algorithm [2, 3], which estimates T ∗ from C. We

1 2 3 4 5
Optimization time (seconds)

0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

Lo
ss

es
 v

al
ue

 (d
as

he
d

lin
es

)

0.04

0.06

0.08

0.10

0.12

0.14

En
d-

Po
in

t-E
rr

or
 v

al
ue

 (s
ol

id
 li

ne
)

Flow smoothness loss
Warp distance loss
End-Point-Error

Figure 8. Refinement evolution. SCOOP was trained on FT3Do

and evaluated on KITTIo. We present the refinement loss values
and the corresponding End-Point-Error (EPE) during the opti-
mization process. The losses are effectively minimized and result
in a substantial reduction of the flow estimation error.

Method Refinement EPE ↓ AS ↑ AR↑ Out.↓

FLOT [18] ✗ 0.142 30.6 61.9 57.6
FLOT [18] ✓ 0.048 89.0 93.5 20.4

SCOOP+ (ours) ✗ 0.139 36.1 63.6 54.9
SCOOP+ (ours) ✓ 0.047 91.3 95.0 18.6

Table 3. Our refinement optimization for another method.
FLOT and SCOOP were trained on 1,800 examples from FT3Do

and tested on KITTIo, without or with our flow refinement compo-
nent. The proposed refinement module considerably improves the
flow estimation performance for both methods.

provide the algorithm’s details in Algorithm 1. In our im-
plementation, the number of iterations M is set to 1.

B. Additional Results

B.1. Refinement Evolution

We examine the relationship between our self-supervised
losses in the flow refinement process, given in Equation 14,
and the resulting End-Point-Error metric (EPE), defined in
subsection 4.1. Figure 8 shows the results (for better visu-
alization, we multiply the smoothness loss value by a factor
of 4 · 10−2). During run-time, we minimize our smooth-
ness and distance losses without using ground-truth flow la-
bels. As a byproduct, the EPE is reduced as well. This
experiment implies that our refinement objective in Equa-
tion 14 correlates with the flow estimation error and serves
as a good proxy for its minimization.

B.2. Refinement Optimization for Another Method

A natural question is whether a flow estimation method
other than ours can benefit from the proposed refinement
optimization module. To address this question, we trained

Algorithm 1: The Sinkhorn Algorithm.
Data: cost matrix C, parameters ϵ, λ ≥ 0, M > 0.
Result: optimal transport matrix T ∗.
T ← exp(−C/ϵ);
a← 1

n1n;
for m = 1, . . . ,M do

b← (1n1n/(T
⊤a))λ/(λ+ϵ);

a← (1n1n/(Tb))
λ/(λ+ϵ);

end
T ∗ ← diag(a) T diag(b);

FLOT [18] on 1,800 examples from the FT3Do train set,
as done for our method. Then, we evaluated FLOT’s per-
formance on the KITTIo data without or with our run-time
refinement (with correspondence confidence equal to 1 for
all the source points). Table 3 summarizes the results.

Training on a 10% fraction of FT3Do data degrades
FLOT’s performance in comparison to using the complete
dataset, as reported in Table 1 in the main body. However,
our refinement optimization substantially contributes to the
flow precision of FLOT and even yields better results com-
pared to using the whole training set. This experiment hints
that our proposed run-time refinement is not tailor-made for
SCOOP and can benefit another method as well.

B.3. Qualitative Results

In Figure 9, we present additional results of SCOOP for
KITTIo data for various challenging cases. For example,
our method can gracefully handle different point densities,
as cars with varying distances from the LiDAR sensor ex-
hibit. In addition, since we require consistency of the flow
field over the point cloud, SCOOP can correctly estimate
the flow for an object with a repetitive structure, such as a
fence. At the same time, our flow estimation method is ver-
satile. It copes with shapes of different geometry and size,
such as the pole and the facade. SCOOP can also predict
translation vectors of different directions and magnitudes,
as for the car and pole.

B.4. Ablation Runs

In Table 4, we report results of our method for different
train set sizes of FT3Do. The table shows that a 10% frac-
tion of the FT3Do data is sufficient for SCOOP to converge
to its optimal performance.

Table 5 presents additional ablation experiments. In this
round, we examined the following settings (one configura-
tion change at a time). (a) Turn off the Sinkhorn normaliza-
tion. In this case, we used T = exp(−C/ϵ) instead of T ∗

from Algorithm 1, and the correspondence construction in
Equations 4 and 5 was done with target points with minimal
matching cost C rather than maximal transport T ∗. (b) Ap-

FT3Do number of training examples 180 1,800 18,000

KITTIo EPE ↓ 0.057 0.047 0.047

Table 4. Train set size ablation. We trained SCOOP on the
FT3Do dataset using a different number of instances and measured
the EPE on the KITTIo dataset. A subset of only 1,800 training
examples is sufficient for our technique.

Setting EPE ↓ AS ↑ AR↑ Out.↓

(a) W/O Sinkhorn 0.042 91.6 95.9 16.1
(b) 3 Sinkhorn iterations 0.040 92.9 96.4 15.3
(c) Linear pxi normalization 0.040 93.5 96.4 15.5
The proposed method 0.039 93.6 96.5 15.2

Table 5. Additional ablations. We trained SCOOP with differ-
ent configurations on KITTIv and evaluated its performance on
KITTIt. The table shows that our method is robust to these con-
figuration variations. Details about the ablative settings appear in
subsection B.4.

ply a higher number of iterations in the Sinkhorn algorithm
by setting M = 3 instead of M = 1. (c) Linear normaliza-
tion for the correspondence confidence pxi

= (sxi
+ 1)/2

instead of the non-linear truncation pxi
= max(sxi

, 0).
In all these settings, the difference in the method’s perfor-
mance was small, implying its robustness to such configu-
ration changes.

B.5. Limitation

A failure case of SCOOP is presented in Figure 11.
When a part of the source scene is completely missing from
the target, the correspondence to existing target points is
inaccurate, and the flow predicted by our method does not
represent the motion of that part. In future work, we plan to
detect such wrong matches by remaining inconsistencies in
the flow field and leverage the global motion of the scene to
deduce the flow for completely occluded regions.

C. An Additional Experiment

In addition to FT3Do and KITTIo, Gu et al. [6] pre-
pared another point cloud version of the FlyingThings3D
and KITTI datasets, denoted as FT3Ds and KITTIs, respec-
tively. In their version, all occluded points are removed, and
each source point has a matched target point. This version
of the datasets is also popular in the scene flow literature,
and for a comprehensive evaluation, we report our method’s
results for this case as well. Additional details about the
datasets appear in subsection D.2.

Since the point clouds produced by Gu et al. have no
occlusions, we adapt our method to the nature of this data.
Instead of the distance loss from Equation 10, we use the

Input point clouds
 SCOOP's result

Figure 9. Visual results. We applied SCOOP to different LiDAR scenes. The source and target input point clouds are presented in red
and green, respectively, and the warped source is shown in blue. Our method is able to predict the scene flow in a variety of challenging
scenarios, such as varied point cloud density (top), repetitive structures (middle), and objects with different sizes and motions (bottom).

bidirectional Chamfer Distance loss [9, 23]:

Lcd = CD(Ŷ , Y) =

1

|Ŷ |

∑
ŷ∈Ŷ

min
y∈Y
||ŷ − y||22 +

1

|Y |
∑
y∈Y

min
ŷ∈Ŷ
||y − ŷ||22,

(18)

where Ŷ is the softy corresponding point cloud to the source
point cloud X (from Equation 7), and Y is the target point
cloud. The Chamfer Distance is also used in the refinement

process and replaces the first term in the optimization objec-
tive in Equation 14. If we define Ŷr = Ŷ + R, the updated
distance loss term for the flow refinement optimization is
CD(Ŷr, Y). The rest of our method’s formulation remains
the same.

Following the evaluation protocol of previous work [6,
8, 18], we train SCOOP on FT3Ds and evaluate the perfor-
mance on the test set of FT3Ds and on the KITTIs data.
Different from prior work, we use only 10% of the FT3Ds
training data, which suffices for our correspondence model

Method Sup. EPE ↓ AS ↑ AR↑ Out.↓

FlowNet3D [15] Full 0.114 41.3 77.1 60.2
HPLFlowNet [6] Full 0.080 61.4 85.6 42.9
PointPWC-Net [23] Full 0.059 73.8 92.8 34.2
FLOT [18] Full 0.052 73.2 92.7 35.7
PV-RAFT [22] Full 0.046 81.7 95.7 29.4
FlowStep3D [8] Full 0.046 81.6 96.1 21.7
HCRF-Flow [11] Full 0.049 83.4 95.1 26.1
RCP [5] Full 0.040 85.7 96.4 19.8
Rigid3DSceneFlow [4] Full 0.052 74.6 93.6 36.1
3D-OGFlow [17] Full 0.036 87.9 - 19.7
SCTN [10] Full 0.038 84.7 96.8 26.8
3DFlow [21] Full 0.028 92.9 98.2 14.6
Bi-PointFlowNet [1] Full 0.028 91.8 97.8 14.3

Ego-motion [20] Self 0.170 25.3 55.0 80.5
PointPWC-Net [23] Self 0.121 32.4 67.4 68.8
Self-Point-Flow [12] Self 0.101 42.3 77.5 60.6
FlowStep3D [8] Self 0.085 53.6 82.6 42.0
RSFNet [7] Self 0.075 58.9 86.2 47.0
RCP [5] Self 0.077 58.6 86.0 41.4
RigidFlow [13] Self 0.069 59.6 87.1 46.4
SCOOP (ours) Self 0.084 56.7 85.1 48.5

Table 6. Quantitative comparison on the FT3Ds test set. All the
methods were trained on the train split of FT3Ds. Our method is
on par with other self-supervised methods.

to coverage. The evaluation metrics are the same as those in
the main body, detailed in subsection 4.1. For both training
and testing, we use point clouds with n = 8192 points.

Tables 6 and 7 present our test results for FT3Ds and
KITTIs, respectively, compared to abundant recent alter-
native methods. While trained only on a 10% fraction of
the data, SCOOP achieves competitive results compared to
other self-supervised methods on FT3Ds. On the KITTIs
dataset, we surpass the performance of both self and fully-
supervised methods for all the evaluation metrics. For ex-
ample, SCOOP improves the EPE metric by 37% over the
very recent Bi-PointFlowNet work [1], reducing the flow
estimation error from 0.030 to 0.019 meters. These re-
sults suggest that our method is highly effective for the real-
world KITTIs data.

D. Implementation Details

D.1. Network Architecture

The point feature extraction is done by a neural network
based on the PointNet++ architecture [19]. The network in-
cludes 3 set-convolution layers, which increase the feature
channels per point. Each layer contains a multi-layer per-
ceptron, interleaved with instance normalization and a leaky
ReLU activation with a negative slope of −0.1. After each
convolutional layer, the point features are aggregated by a

Method Sup. EPE ↓ AS ↑ AR↑ Out.↓

FlowNet3D [15] Full 0.177 37.4 66.8 52.7
HPLFlowNet [6] Full 0.117 47.8 77.8 41.0
PointPWC-Net [23] Full 0.069 72.8 88.8 26.5
FLOT [18] Full 0.056 75.5 90.8 24.2
PV-RAFT [22] Full 0.056 82.3 93.7 21.6
FlowStep3D [8] Full 0.055 80.5 92.5 14.9
HCRF-Flow [11] Full 0.053 86.3 94.4 18.0
RCP [5] Full 0.048 84.9 94.5 12.3
Rigid3DSceneFlow [4] Full 0.042 84.9 95.9 20.8
3D-OGFlow [17] Full 0.039 88.2 - 17.5
SCTN [10] Full 0.037 87.3 95.9 17.9
3DFlow [21] Full 0.031 90.5 95.8 16.1
Bi-PointFlowNet [1] Full 0.030 92.0 96.0 14.1

Ego-motion [20] Self 0.415 22.1 37.2 81.0
PointPWC-Net [23] Self 0.255 23.8 49.6 68.6
Self-Point-Flow [12] Self 0.112 52.8 79.4 40.9
FlowStep3D [8] Self 0.102 70.8 83.9 24.6
RSFNet [7] Self 0.092 74.7 87.0 28.3
RCP [5] Self 0.076 78.6 89.2 18.5
RigidFlow [13] Self 0.062 72.4 89.2 26.2
SCOOP (ours) Self 0.019 97.1 98.5 10.7

Table 7. Quantitative comparison on the KITTIs data. All the
methods were trained on the train split of FT3Ds. SCOOP outper-
forms all the compared alternatives, both the self-supervised and
the fully-supervised ones.

FT3Do / FT3Ds (~18,000)

KITTIr (6,068)

KITTIv (100)

1,800

Figure 10. Visual illustration of the training datasets’ size. We
use a small amount of data for training (stripe pattern) compared
to the amount used by others (solid pattern).

max pooling operation from 32 Euclidean nearest neighbor
points. The coordinate difference between the point and its
neighbors is concatenated to the input features of every set-
convolution layer. Table 8 details the feature dimensions of
the network’s layers.

D.2. Training and Inference

Training dataset size. We illustrate the size of the train-
ing datasets in Figure 10. As explained in the paper (subsec-
tion 4.2), SCOOP is a data-light method that requires much
less training data than other learning-based methods.

Input point clouds
 Warp by the estimated flow
 Warp by the ground-truth flow

Figure 11. A failure example. We show the source point cloud in red, the target in green (left), the translated source by SCOOP in blue
(middle), and the translated source by the ground-truth flow in purple (right). A set of source points whose target is completely occluded
is marked with a gray ellipse. Its warp by the estimated and the ground-truth flow is delineated by a blue ellipse and a purple ellipse,
respectively. Our method struggles to predict the correct flow in such a case.

Network architecture

concat(coordinates (3), neighbors’ coordinate difference (3))
SetConv(32, 32, 32)

neighbors max pooling (32)
concat(features (32), neighbors’ coordinate difference (3))

SetConv(64, 64, 64)
neighbors max pooling (64)

concat(features (64), neighbors’ coordinate difference (3))
SetConv(128, 128, 128)

neighbors max pooling (128)

Table 8. The architecture of the feature extraction model. The
values in parentheses indicate the per-point feature dimension at
each network stage. concat represents a concatenation opera-
tion. The coordinate difference and max pooling operation are
computed with a neighborhood of 32 nearest points in the Eu-
clidean space. SetConv is the set convolution described in sub-
section D.1, where the numbers in its parentheses refer to the filter
sizes of the multi-layer perceptron.

Occluded data version. The FT3Do dataset contains
point clouds of 8,192 points, where the z-axis coincides
with the depth axis, and the maximal z-value is limited to
35 meters [15]. In the KITTIo dataset, there are several tens
of thousands of points per scene, with a different number
of points for the source and target point clouds, denoted as
Ns and Nt, respectively. We align the z-axis of KITTIo to
the depth axis and trim the maximal z-value to 35 meters,
as done for the FT3Do data [18].

For memory-efficient training, SCOOP is trained on
point sets with the same number of n = 2,048 points sam-
pled at random from the original point clouds. Following
previous work [13,15,16,18], we evaluate SCOOP on small
test point clouds of randomly sampled 2,048 points. How-

Train/Test data (#points) kf λflow
Gradient Update

steps rate

FT3Do/KITTIo (2,048) 32 1.0 1000 0.05
KITTIv/KITTIt (2,048) 32 1.0 1000 0.05
FT3Do/KITTIo (29,951) 32 1.0 150 0.2
KITTIv/KITTIt (30,814) 32 1.0 150 0.2
FT3Ds/FT3Ds (8,192) 16 1.0 1000 0.1
FT3Ds/KITTIs (8,192) 32 1.0 1000 0.05

Table 9. Refinement hyperparameters. The table details the val-
ues we used for our flow refinement optimization process for dif-
ferent dataset settings. For each setting, we indicate the train/test
datasets and the average number of points in the test point clouds.

ever, we also employ our method to infer the flow for all the
points Ns in the source point cloud, as explained next.

At the test-time, we randomly shuffle the source points
and the target points, divide them into disjoint chunks of
n = 2,048 points, and compute the point features ΦX and
ΦY for each chunk, as done in the training stage. If the
number of points is not divided by n, we pad with ran-
domly selected points from within the point cloud to the
closest multiple of n. Then, for each source chuck, we cal-
culate the matching cost with respect to all the points in the
target, obtain a cost matrix Cchunk ∈ Rn×Nt , and com-
pute the correspondence-based flow Fchunk ∈ Rn×3. Af-
terward, we collect the flow from the different chunks, re-
move the padded points (if any), and get the per-point flow
F ∈ RNs×3.

Our inference process for the complete point clouds has
several advantages. First, it can be used for source and tar-
get point clouds with different cardinality since each point
cloud is padded to a multiple of n. Second, as we extract

point features in chunks of n points, the process remains
memory-efficient and emulates inputs to the network simi-
lar to the training phase. Third, it utilizes the complete point
information from the target by computing the cost matrix
and correspondence flow at the original target point cloud
resolution.

Similarly, we perform the flow refinement optimization
at the full source and target point cloud resolution. Namely,
the distance loss for flow refinement is computed between
the complete warped source and the complete target, and
the flow smoothness loss is calculated at the original source
point cloud resolution. This way, the whole scene data is
exploited.

For network-only baselines [12, 13, 16], inferring the
scene flow directly for the high point cloud resolution is
computationally infeasible, let alone training the models
on the complete large point clouds. Thus, following their
training scheme on small point clouds with 2,048 points,
we divided the original point clouds into chunks of 2,048
points, applied the models, and averaged the results across
the chunks to obtain the evaluation for all the points in the
dataset.

We note that our results for Neural Prior [14] are differ-
ent from those reported in their paper. In their work, they
did not limit the depth value of the point clouds. However,
in our work, we used points with a maximal depth of 35 me-
ters to align with previous learning-based methods [15,18].

Non-occluded data version. The FT3Ds dataset has
19,640 and 3,824 point cloud pairs for the train and test
sets, respectively. Each point cloud has 8,192 points. We
keep aside 2,000 examples from the training set for valida-
tion during training. The KITTIs data include 200 pairs of
source and target point clouds, where 142 of which are used
for evaluation. Ground points are removed by a threshold
on the height. In both datasets, points with a depth larger
than 35 meters are excluded, as done by Gu et al. [6]. For
testing, we randomly sample 8,192 points from the source
and target point clouds each. Our inference time for FT3Ds
and KITTIs is about 3.7 seconds.

D.3. Optimization

We trained our point embedding model with an ADAM
optimizer with an initial learning rate of 0.001 and a mo-
mentum of 0.9. On the FT3Do dataset, we trained the model
for 30, 100, and 200 epochs when using 180, 1,800, and
18,000 training examples, respectively. For training on the
KITTIv dataset, we used 400 epochs, and the learning rate
was reduced by a factor of 10 after 340 epochs. In all these
cases, the batch size was 4. For the FT3Ds dataset, we se-
lected 1,800 examples at random and trained our model for
60 epochs with a batch size of 1. The learning rate was
multiplied by 0.1 after 50 epochs.

As mentioned in the paper, we optimized ϵ and λ from
the regularized transport problem (Equation 3 in the main
body) during the training process. Their log value was
learned to ensure their non-negativity. In addition, we added
a constant of 0.03 to the learned value of ϵ for the numerical
stability of the learning process.

The refinement component R∗ in Equation 14 in the pa-
per was defined as an optimizable variable and initialized to
a matrix of zeros. We optimized its value using an ADAM
optimizer with a momentum of 0.9. Further hyperparame-
ters are given in Table 9. All our experiments were done on
an NVIDIA Titan Xp GPU.

References
[1] Wencan Cheng and Jong Hwan Ko. Bi-PointFlowNet: Bidi-

rectional Learning for Point Cloud Based Scene Flow Esti-
mation. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 108–124, 2022. 1, 2, 6, 14

[2] Lenaic Chizat, Gabriel Peyré, Bernhard Schmitzer, and
François-Xavier Vialard. Scaling Algorithms for Unbal-
anced Transport Problems. Mathematics of Computation,
87:2563–2609, 2018. 3, 11

[3] Marco Cuturi. Sinkhorn Distances: Lightspeed Computation
of Optimal Transport. In Advances in Neural Information
Processing Systems (NeurIPS), pages 2292–2300, 2013. 3,
11

[4] Zan Gojcic, Or Litany, Andreas Wieser, Leonidas J. Guibas,
and Tolga Birdal. Weakly Supervised Learning of Rigid 3D
Scene Flow. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
5692–5703, 2021. 1, 3, 14

[5] Xiaodong Gu, Chengzhou Tang, Weihao Yuan, Zuozhuo
Dai, Siyu Zhu, and Ping Tan. RCP: Recurrent Closest Point
for Scene Flow Estimation on 3D Point Clouds. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 8216–8226, 2022. 14

[6] Xiuye Gu, Yijie Wang, Chongruo Wu, Yong Jae Lee, and
Panqu Wang. HPLFlowNet: Hierarchical Permutohedral
Lattice FlowNet for Scene Flow Estimation on Large-Scale
Point Clouds. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
3254–3263, 2019. 1, 2, 12, 13, 14, 16

[7] Pan He, Patrick Emami, Sanjay Ranka, and Anand Rangara-
jan. Self-Supervised Robust Scene Flow Estimation via the
Alignment of Probability Density Functions. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI),
pages 861–869, 2022. 14

[8] Yair Kittenplon, Yonina C. Eldar, and Dan Raviv. Flow-
Step3D: Model Unrolling for Self-Supervised Scene Flow
Estimation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 4114–
4123, 2021. 1, 3, 4, 13, 14

[9] Itai Lang, Dvir Ginzburg, Shai Avidan, and Dan Raviv. DPC:
Unsupervised Deep Point Correspondence via Cross and Self
Construction. In Proceedings of the International Confer-
ence on 3D Vision (3DV), pages 1442–1451, 2021. 2, 3, 13

[10] Bing Li, Cheng Zheng, Silvio Giancola, and Bernard
Ghanem. SCTN: Sparse Convolution-Transformer Network
for Scene Flow Estimation. In Proceedings of the AAAI Con-
ference on Artificial Intelligence (AAAI), pages 1254–1262,
2022. 14

[11] Ruibo Li, Guosheng Lin, Tong He, Fayao Liu, and Chun-
hua Shen. HCRF-Flow: Scene Flow from Point Clouds
with Continuous High-order CRFs and Position-aware Flow
Embedding. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
364–373, 2021. 14

[12] Ruibo Li, Guosheng Lin, and Lihua Xie. Self-Point-Flow:
Self-Supervised Scene Flow Estimation from Point Clouds
with Optimal Transport and Random Walk. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 15577–15586, 2021. 1, 2, 3, 5,
6, 7, 14, 16

[13] Ruibo Li, Chi Zhang, Guosheng Lin, Zhe Wang, and Chun-
hua Shen. RigidFlow: Self-Supervised Scene Flow Learning
on Point Clouds by Local Rigidity Prior. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16959–16968, 2022. 1, 2, 6, 7, 14, 15,
16

[14] Xueqian Li, Jhony Kaesemodel Pontes, and Simon Lucey.
Neural Scene Flow Prior. In Advances in Neural Information
Processing Systems (NeurIPS), pages 7838–7851, 2021. 2,
3, 6, 7, 16

[15] Xingyu Liu, Charles R. Qi, and Leonidas J. Guibas.
FlowNet3D: Learning Scene Flow in 3D Point Clouds. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 529–537, 2019.
1, 2, 5, 6, 14, 15, 16

[16] Himangi Mittal, Brian Okorn, and David Held. Just Go with
the Flow: Self-Supervised Scene Flow Estimation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 11177–11185, 2020.
1, 2, 4, 5, 6, 7, 15, 16

[17] Bojun Ouyang and Dan Raviv. Occlusion Guided Self-
supervised Scene Flow Estimation on 3D Point Clouds. In
Proceedings of the International Conference on 3D Vision
(3DV), pages 782–791, 2021. 14

[18] Gilles Puy, Alexandre Boulch, and Renaud Marlet. FLOT:
Scene Flow on Point Clouds Guided by Optimal Transport.
In Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 527–544, 2020. 1, 2, 3, 4, 5, 6, 7, 11,
12, 13, 14, 15, 16

[19] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Point-
Net++: Deep Hierarchical Feature Learning on Point Sets in
a Metric Space. In Advances in Neural Information Process-
ing Systems (NeurIPS), pages 5099–5108, 2017. 3, 5, 14

[20] Ivan Tishchenko, Sandro Lombardi, Martin R. Oswald, and
Marc Pollefeys. Self-Supervised Learning of Non-Rigid
Residual Flow and Ego-Motion. In Proceedings of the In-
ternational Conference on 3D Vision (3DV), pages 150–159,
2020. 14

[21] Guangming Wang, Yunzhe Hu, Zhe Liu, Yiyang Zhou,
Masayoshi Tomizuka, Wei Zhan, and Hesheng Wang. What

Matters for 3D Scene Flow Network. In Proceedings of the
European Conference on Computer Vision (ECCV), pages
38–55, 2022. 14

[22] Yi Wei, Ziyi Wang, Yongming Rao, Jiwen Lu, and Jie Zhou.
PV-RAFT: Point-Voxel Correlation Fields for Scene Flow
Estimation of Point Clouds. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 6954–6963, 2021. 14

[23] Wenxuan Wu, Zhi Yuan Wang, Zhuwen Li, Wei Liu, and Li
Fuxin. PointPWC-Net: Cost Volume on Point Clouds for
(Self-) Supervised Scene Flow Estimation. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 88–107, 2020. 1, 2, 13, 14

	. Correspondence as Optimal Transport
	. Additional Results
	. Refinement Evolution
	. Refinement Optimization for Another Method
	. Qualitative Results
	. Ablation Runs
	. Limitation

	. An Additional Experiment
	. Implementation Details
	. Network Architecture
	. Training and Inference
	. Optimization

